Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium ( H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
The increasing demand for stable isotopically labeled compounds has led to an increased interest in H/D-exchange reactions at carbon centers. Today deuterium-labeled compounds are used as internal standards in mass spectrometry or to help elucidate mechanistic theories. Access to these deuterated compounds takes place significantly more efficiently and more cost effectively by exchange of hydrogen by deuterium in the target molecule than by classical synthesis. This Review will concentrate on the preparative application of the H/D-exchange reaction in the preparation of deuterium-labeled compounds. Advances over the last ten years are brought together and critically evaluated.
The various applications of hydrogen isotopes (deuterium, D, and tritium, T) in the physical and life sciences demand a range of methods for their installation in an array of molecular architectures. In this Review, we describe recent advances in synthetic C-H functionalisation for hydrogen isotope exchange.
A novel and convenient protocol for the catalytic hydrogen-deuterium exchange of biologically active tertiary amines utilizing the borrowing hydrogen methodology has been developed. In the presence of the readily available Shvo catalyst, excellent chemoselectivity toward α- and β-protons with respect to the nitrogen atom as well as high degree of deuterium incorporation and functional group tolerance is achieved. This allowed for the deuteration of complex pharmaceutically interesting substrates, including examples for actual marketed drug compounds. Notably, this method constitutes a powerful tool for the generation of valuable internal standard materials for LC-MS/MS analyses highly demanded for various life-science applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.