Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip â microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug speci®c-ally targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa bio®lms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.
Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp). Gfpbased reporter technology has been applied for non-destructive, single-celllevel detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum.
Use of the green fluorescent protein (Gfp) from the jellyfishAequorea victoria is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli andPseudomonas putida. The new Gfp variants should be useful for in situ studies of temporal gene expression.
Halogenated furanones produced by the macroalga Delisea pulchra inhibit AHL-dependent gene expression. This study assayed for an in vivo interaction between a tritiated halogenated furanone and the LuxR protein of Vibrio fischeri overproduced in Escherichia coli. Whilst a stable interaction between the algal metabolite and the bacterial protein was not found, it was noted by Western analysis that the half-life of the protein is reduced up to 100-fold in the presence of halogenated furanones. This suggests that halogenated furanones modulate LuxR activity but act to destabilize, rather than protect, the AHL-dependent transcriptional activator. The furanone-dependent reduction in the cellular concentration of the LuxR protein was associated with a reduction in expression of a plasmid encoded P luxI -gfp(ASV) fusion suggesting that the reduction in LuxR concentration is the mechanism by which furanones control expression of AHL-dependent phenotypes. The mode of action by which halogenated furanones reduce cellular concentrations of the LuxR protein remains to be characterized.
Quorum sensing (QS) communication systems are thought to afford bacteria with a mechanism to strategically cause disease. One example is Pseudomonas aeruginosa, which infects immunocompromised individuals such as cystic fibrosis patients. The authors have previously documented that blockage of the QS systems not only attenuates Ps. aeruginosa but also renders biofilms highly susceptible to treatment with conventional antibiotics. Filamentous fungi produce a battery of secondary metabolites, some of which are already in clinical use as antimicrobial drugs. Fungi coexist with bacteria but lack active immune systems, so instead rely on chemical defence mechanisms. It was speculated that some of these secondary metabolites could interfere with bacterial QS communication. During a screening of 100 extracts from 50 Penicillium species, 33 were found to produce QS inhibitory (QSI) compounds. In two cases, patulin and penicillic acid were identified as being biologically active QSI compounds. Their effect on QS-controlled gene expression in Ps. aeruginosa was verified by DNA microarray transcriptomics. Similar to previously investigated QSI compounds, patulin was found to enhance biofilm susceptibility to tobramycin treatment. Ps. aeruginosa has developed QS-dependent mechanisms that block development of the oxidative burst in PMN neutrophils. Accordingly, when the bacteria were treated with either patulin or penicillic acid, the neutrophils became activated. In a mouse pulmonary infection model, Ps. aeruginosa was more rapidly cleared from the mice that were treated with patulin compared with the placebo group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.