BackgroundNasal highflow (NHF) provides a warmed and humidified air stream up to 60 L/min. Recent data demonstrated a positive effect in patients with acute hypoxemic respiratory failure, especially when caused by pneumonia. Preliminary data show a decrease in hypercapnia in patients with COPD. Therefore, NHF should be evaluated as a new ventilatory support device. This study was conducted to assess the impact of different flow rates on ventilatory parameters in patients with COPD.Materials and methodsThis interventional clinical study was performed with patients suffering from severe COPD. The aim was to characterize flow-dependent changes in mean airway pressure, breathing volumes, breathing frequency, and decrease in partial pressure of CO2 (pCO2). Mean airway pressure was measured in the nasopharyngeal space (19 patients). To evaluate breathing volumes, we used a polysomnographic device (18 patients). All patients received 20 L/min, 30 L/min, 40 L/min, and 50 L/min and – to illustrate the effects – nasal continuous positive airway pressure and nasal bilevel positive airway pressure. Capillary blood gas analyses were performed in 54 patients with hypercapnic COPD before and two hours after the use of NHF. We compared the extent of decrease in pCO2 when using 20 L/min and 30 L/min. Additionally, comfort and dyspnea during the use of NHF were surveyed.ResultsNHF resulted in a minor flow dependent increase in mean airway pressure. Tidal volume increased, and breathing rate decreased. The calculated minute volume decreased under NHF breathing. In spite of this fact, hypercapnia decreased with increasing flow (20 L/min vs 30 L/min). Additionally, an improvement in dyspnea was observed. The rapid shallow breathing index shows a decrease when using NHF.ConclusionNHF leads to a flow-dependent reduction in pCO2. This is most likely achieved by a washout of the respiratory tract and a functional reduction in dead space. In summary, NHF enhances effectiveness of breathing in patients with COPD, reduces pCO2, the work of breathing, and rapid shallow breathing index as an indicator of respiratory work load.
rates and minute volumes were reduced in all groups. Capillary pCO 2 decreased in patients with IPF and COPD. Conclusions: nHF resulted in significant effects on respiratory parameters in patients with obstructive and restrictive pulmonary diseases. The rise in pressure amplitude and mean pressure and the decrease in breathing rate and minute volume will support inspiratory efforts, helps to increase effectiveness of ventilation and will contribute to a reduction in the work of breathing. A CO 2 wash-out effect in the upper airway part of the anatomical dead space may contribute to the beneficial effects of the nHF instrument.
Nasal high flow (NHF) has gained popularity among intensivists to manage patients with acute respiratory failure. An important literature has accompanied this evolution. In this review, an international panel of experts assessed potential benefits of NHF in different areas of acute respiratory failure management. Analyses of the physiological effects of NHF indicate flow-dependent improvement in various respiratory function parameters. These beneficial effects allow some patients with severe acute hypoxemic respiratory failure to avoid intubation and improve their outcome. They require close monitoring to not delay intubation. Such a delay may worsen outcome. The ROX index may help clinicians decide when to intubate. In immunocompromised patients, NHF reduces the need for intubation but does not impact mortality. Beneficial physiological effects of NHF have also been reported in patients with chronic respiratory failure, suggesting a possible indication in acute hypercapnic respiratory failure. When intubation is required, NHF can be used to pre-oxygenate patients either alone or in combination with non-invasive ventilation (NIV). Similarly, NHF reduces reintubation alone in low-risk patients and in combination with NIV in high-risk patients. NHF may be used in the emergency department in patients who would not be offered intubation and can be better tolerated than NIV.
BackgroundNasal Highflow (NHF) delivers a humidified and heated airflow via nasal prongs. Current data provide evidence for efficacy of NHF in patients with hypoxemic respiratory failure. Preliminary data suggest that NHF may decrease hypercapnia in hypercapnic respiratory failure. The aim of this study was to evaluate the mechanism of NHF mediated PCO2 reduction in patients with chronic obstructive pulmonary disease (COPD).MethodsIn 36 hypercapnic COPD patients (PCO2 > 45 mmHg), hypercapnia was evaluated by capillary gas sampling 1 h after NHF breathing under four conditions A to D with different flow rates and different degrees of leakage (A = 20 L/min, low leakage, two prongs, both inside; B = 40 L/min, low leakage, two prongs, both inside; C = 40 L/min, high leakage, two prongs, one outside and open; D = 40 L/min, high leakage, two prongs, one outside and closed). Under identical conditions, mean airway pressure was measured in the hypopharynx of 10 COPD patients.ResultsHypercapnia significantly decreased in all patients. In patients with capillary PCO2 > 55 mmHg (n = 26), PCO2 additionally decreased significantly by increased leakage and/or flow rate in comparison to lower leakage/ flow rate conditions (A = 94.2 ± 8.2%; B = 93.5 ± 4.4%; C = 90.5 ± 7.2%; D = 86.8 ± 3.8%). The highest mean airway pressure was observed in patients breathing under condition B (2.3 ± 1.6 mbar; p < 0.05).ConclusionsThis study demonstrates effective PCO2 reduction with NHF therapy in stable hypercapnic COPD patients. This effect does not correlate with an increase in mean airway pressure but with increased leakage and airflow, indicating airway wash out and reduction of functional dead space as important mechanisms of NHF therapy. These results may be useful when considering NHF treatment in hypercapnic COPD patients.Trial registrationClinical Trials: NCT02504814; First posted July 22, 2015.
BackgroundThere are no data available about effectiveness of Nasal High-flow (NHF)in chronic respiratory insufficiency.MethodsEleven COPD patients with stable hypercapnia were adjusted to NHF-system with a flow of 20 l/min. After six weeks patients were switched to non-invasive ventilation (NIV) for another six weeks period.ResultsNHF led to significant decreases in resting pCO2. Between the devices we found no differences in pCO2 levels.ConclusionsNHF may thus be an alternative treatment device in stable hypercapnic COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.