Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications.
4'-N,N-Diethylamino-3-hydroxyflavone (DEAHF) exhibits dual fluorescence in most solvents as a result of a rapid excited-state intramolecular proton transfer reaction. The high sensitivity of its dual emission to solvent polarity and hydrogen bonding make DEAHF of interest as a ratiometric fluorescence sensor. In addition, prior work has suggested that the rate of this proton transfer should depend on solvent relaxation in an unusual manner. It has been proposed that rapid solvation of the initially excited reactant should retard reaction. The present work tests this idea by using femtosecond Kerr-gated emission spectroscopy to measure the reaction kinetics of DEAHF in mixtures of propylene carbonate (PC) + acetonitrile (ACN). This mixture was chosen to maintain constant solvent polarity and thereby constant reaction energies while varying solvation times ∼10-fold with composition. The reaction kinetics observed in these mixtures are multiexponential, consisting of resolvable components of ∼2 and ∼30 ps and a small fraction of reaction faster than detectable by the 400 fs resolution of the experiment. Average reaction times increase by approximately a factor of 2 as a function of ACN mole fraction, primarily as a result of changes to the slower kinetic component. This trend is opposite to the composition dependence of solvation times, thereby supporting the unusual role of polar solvation dynamics in this proton transfer. In n-alkane solvents, where electrostatic coupling is minimized, frictional properties of the solvent do not influence reaction rates.
While momentum transfer from active particles to their immediate surroundings has been studied for both synthetic and biological micron-scale systems, a similar phenomenon was presumed unlikely to exist at smaller length scales due to the dominance of viscosity in the ultralow Reynolds number regime. Using diffusion NMR spectroscopy, we studied the motion of two passive tracers--tetramethylsilane and benzene--dissolved in an organic solution of active Grubbs catalyst. Significant enhancements in diffusion were observed for both the tracers and the catalyst as a function of reaction rate. A similar behavior was also observed for the enzyme urease in aqueous solution. Surprisingly, momentum transfer at the molecular scale closely resembles that reported for microscale systems and appears to be independent of swimming mechanism. Our work provides new insight into the role of active particles on advection and mixing at the Ångström scale.
The spectral evolution of fluorescence from 4-(dimethylamino)-4'-cyanostilbene (DCS) in methanol, and of two derivatives bearing either the anilino (ACS) or the julolidino (JCS) moiety, was measured by optical Kerr-gating with a time resolution of 0.35 ps. A special thin Glan polariser in the Kerr shutter allows high contrast without unnecessarily increasing the group delay dispersion. The emission band may thus be gated and observed even with highly fluorescent samples. The spectral dynamics consists of a continuous red-shift and narrowing with similar relaxation behavior throughout, i.e. between these two observables and the three compounds. This suggests that polar solvation is the common cause for spectral relaxation after 0.2 ps. The continuum model describes the dynamic Stokes shift quantitatively. Contrary to previous reports we do not find a temporary isosbestic point in the fluorescence of JCS, nor is there evidence for a dependence on anilino substituents. The crystal structures of DCS and JCS are provided.
Solvation and rotational dynamics of 4-aminophthalimide (4AP) in four ionic liquids (ILs) are measured using a combination of fluorescence upconversion spectroscopy and time-correlated single photon counting. These data are compared with previously reported data for coumarin 153 (C153) to investigate the probe dependence of solvation dynamics. No fast component (<15 ps) in the fluorescence anisotropy is observed with 4AP. The differences between the solvation response functions of 4AP and C153 are significant in all four ILs, but these differences can be reduced by applying a correction for solute rotation using measured emission anisotropies. Response functions of other probes available in the literature are used to further examine the validity of this correction. The corrected data are also compared to predictions of dielectric continuum models of solvation. By replacing the measured static conductivity of the ILs with an estimated value, such predictions show good agreement with the observed spectral response functions, especially when the anion size is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.