Eukaryotic cell adhesion is a fundamental process in tissue development, homeostasis, and disease and is mediated by specific interactions of cell surface receptors with extracellular matrix (ECM) 2 proteins (1-5). The ECM is a meshwork of fibrillar and nonfibrillar components assembled into complex structures such as basement membranes. The latter provide a scaffold for cell adhesion, spreading, and migration. ECM regulates numerous cell functions by activating multiple signaling pathways at the adhesion sites. ECMs, composed of collagens, laminins, and other glycoproteins such as fibronectin (FN), serve as substrates for different adhesion molecules including the integrin family of transmembrane receptors. The assembly of ECM components into functional supramolecular modules is highly regulated (3-7). FN matrix assembly alone is a dynamic cell-driven process in which the soluble FN molecules assemble into insoluble fibrillar polymeric ECM structures (8).FN and integrin receptors play crucial roles in a variety of morphogenetic processes, which are regulated by processes termed outside-in and inside-out signaling cascades (3-5). Deregulation of integrin and FN functions associates with disease development including chronic inflammation, heart failure, cancer, and metastasis (7, 9 -11). The outside-in signaling triggered by ligation of integrin receptors with FN and other ECM components results in the reorganization of cytoskeletal and signaling molecules into complexes of more than 90 proteins (9 -13). This occurs by synergistic processes dependent on integrin aggregation and occupancy, as well as tyrosine phosphorylation. Integrins also cooperate with growth factor receptors such as epidermal growth factor receptor (EGFR) to enhance signaling (14).FN consists of multiple domains (classified types I-III) that show binding specificities for specific cell membrane receptors, collagen, fibrin, and heparin. FN alone is sufficient to induce highly efficient spreading of many mammalian cell types including fibroblast and epithelial cells in vitro. An important functional unit of FN is its RGD tripeptide motif, which acts in
RGD tripeptide motifs frequently mediate ligand binding to integrins. The type IV secretion system (T4SS) protein CagL of the gastric pathogen Helicobacter pylori also contains an RGD motif. CagL decorates the T4SS pilus and may function as an adhesin for host cells. Whether CagL binds integrins via its RGD motif is under debate. Here, we present crystal structures of CagL revealing an elongated four-helix bundle that appears evolutionarily unrelated to the proposed VirB5 orthologs. The RGD motif is surface-exposed but located within a long α helix. This is unprecedented as previously characterized integrin-binding RGD motifs are located within extended or flexible loops. Yet, adhesion of gastric epithelial cells to CagL was strictly RGD-dependent. Comparison of seven crystallographically independent molecules reveals substantial structural flexibility. Intramolecular disulfide bonds engineered to reduce CagL flexibility resulted in more stable protein, but unable to support cell adhesion. CagL may thus partly unfold during receptor binding.
Helicobacter pylori is a specific gastric pathogen that colonizes the stomach in more than 50% of the world’s human population. Infection with this bacterium can induce several types of gastric pathology, ranging from chronic gastritis to peptic ulcers and even adenocarcinoma. Virulent H. pylori isolates encode components of a type IV secretion system (T4SS), which form a pilus for the injection of virulence proteins such as CagA into host target cells. This is accomplished by a specialized adhesin on the pilus surface, the protein CagL, a putative VirB5 ortholog, which binds to host cell β1 integrin, triggering subsequent delivery of CagA across the host cell membrane. Like the human extracellular matrix protein fibronectin, CagL contains an RGD (Arg-Gly-Asp) motif and is able to trigger intracellular signaling pathways by RGD-dependent binding to integrins. While CagL binding to host cells is mediated primarily by the RGD motif, we identified an auxiliary binding motif for CagL–integrin interaction. Here, we report on a surface exposed FEANE (Phe-Glu-Ala-Asn-Glu) interaction motif in spatial proximity to the RGD sequence, which enhances the interactions of CagL with integrins. It will be referred to as RGD helper sequence (RHS). Competitive cell adhesion assays with recombinant wild type CagL and point mutants, competition experiments with synthetic cyclic and linear peptides, and peptide array experiments revealed amino acids essential for the interaction of the RHS motif with integrins. Infection experiments indicate that the RHS motif plays a role in the early interaction of H. pylori T4SS with integrin, to trigger signaling and to inject CagA into host cells. We thus postulate that CagL is a versatile T4SS surface protein equipped with at least two motifs to promote binding to integrins, thereby causing aberrant signaling within host cells and facilitating translocation of CagA into host cells, thus contributing directly to H. pylori pathogenesis.
Tumor targeting anticancer drug conjugates that contain a tumor recognition motif (homing device) are of high current relevance. Cryptophycins, naturally occurring cytotoxic cyclo-depsipeptides, have been modified by total synthesis to provide analogues suitable for conjugation to peptide-based homing devices. An array of functionalized β(2)-amino acids was synthesized and incorporated into cryptophycins. All analogues proved to be highly active in the cytotoxicity assay using the human cervix carcinoma cell line KB-3-1 and its multidrug-resistant subclone KB-V1. Conformational analysis of cryptophycin-52 and two synthetic analogues was performed by NMR and MD methods to obtain information on the influence of the unit C configuration on the overall conformation. An azide-functionalized cryptophycin was connected by CuAAC to an alkyne-containing fluorescently labeled cyclic RGD-peptide as the homing device for internalization studies. Confocal fluorescence microscopy proved integrin-mediated internalization by endocytosis and final lysosomal localization of the cryptophycin prodrug.
The human pathogen Helicobacter pylori that may cause different gastric diseases exploits integrins for infection of gastric cells. The H. pylori protein CagL present on the outer region of the type IV secretion pilus contains an RGD sequence (-Arg-Gly-Asp-) that enables binding to cells presenting integrins α5β1 and αVβ3. This interaction can be inhibited with conformationally designed cyclic RGD peptides derived from the CagL epitope -Ala-Leu-Arg-Gly-Asp-Leu-Ala-. The inhibition of the CagL-αVβ3 interaction by different RGD peptides strongly suggests the importance of the RGD motif for CagL binding. CagL point mutants (RAD, RGA) show decreased affinity to integrin αVβ3. Furthermore, structure-activity relationship studies with cyclic RGD peptides in a spatial screening approach show the distinct influence of the three-dimensional arrangement of RGD motif on the ability to interfere with this interaction. Resulting from these studies, similar structural requirements for the CagL epitope as previously suggested for other ligands of integrin αVβ3 are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.