A surprisingly high degree of structural and compositional dynamics is observed in the system LiBH 4 -LiCl as a function of temperature and time. Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data reveals that Cl -readily substitutes for BH 4 -in the structure of LiBH 4 . Prolonged heating a sample of LiBH 4 -LiCl (1:1 molar ratio) above the phase transition temperature and below the melting point (108 < T < 275°C) can produce highly chloride substituted hexagonal lithium borohydride, h-Li(BH 4 ) 1-x Cl x , e.g., x ∼ 0.42, after heating from room temperature (RT) to 224°C at 2.5°C/min. LiCl has a higher solubility in h-LiBH 4 as compared to orthorhombic lithium borohydride, o-LiBH 4 , which is illustrated by a LiBH 4 -LiCl (1:1) sample equilibrated at 245°C for 24 days and left at RT for another 13 months. Rietveld refinement reveals that this sample contains o-Li(BH 4 ) 0.91 Cl 0.09 and LiCl. This illustrates a significantly faster dissolution of LiCl in h-LiBH 4 as compared to a slower segregation of LiCl from o-LiBH 4 , which is also demonstrated by in situ SR-PXD from three cycles of heating and cooling of the same Li(BH 4 ) 0.91 Cl 0.09 sample. The substitution of the smaller Cl -for the larger BH 4 -ion is clearly observed as a reduction in the unit cell volume as a function of time and temperature. A significant stabilization of h-LiBH 4 is found to depend on the degree of anion substitution. Variable temperature solid-state magic-angle spinning (MAS) 7 Li and 11 B NMR experiments on pure LiBH 4 show an increase in full width at half maximum (fwhm) when approaching the phase transition from o-to h-LiBH 4 , which indicates an increase of the relaxation rate (i.e., T 2 decreases). A less pronounced effect is observed for ion-substituted Li(BH 4 ) 1-x Cl x , 0.09 < x < 0.42. The MAS NMR experiments also demonstrate a higher degree of motion in the hexagonal phase, i.e., fwhm is reduced by more than a factor of 10 at the o-to h-LiBH 4 phase transition.
This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al 2 O 3 ) capillary, or a quartz (SiO 2 ) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be $300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to $100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.