OBJECTIVE—Klinefelter’s syndrome is associated with an increased prevalence of diabetes, but the pathogenesis is unknown. Accordingly, the aim of this study was to investigate measures of insulin sensitivity, the metabolic syndrome, and sex hormones in patients with Klinefelter’s syndrome and an age-matched control group. RESEARCH DESIGN AN METHODS—In a cross-sectional study, we examined 71 patients with Klinefelter’s syndrome, of whom 35 received testosterone treatment, and 71 control subjects. Body composition was evaluated using dual-energy X-ray absorptiometry scans. Fasting blood samples were analyzed for sex hormones, plasma glucose, insulin, C-reactive protein (CRP), and adipocytokines. We analyzed differences between patients with untreated Klinefelter’s syndrome and control subjects and subsequently analyzed differences between testosterone-treated and untreated Klinefelter’s syndrome patients. RESULTS—Of the patients with Klinefelter’s syndrome, 44% had metabolic syndrome (according to National Cholesterol Education Program/Adult Treatment Panel III criteria) compared with 10% of control subjects. Insulin sensitivity (assessed by homeostasis model assessment 2 modeling), androgen, and HDL cholesterol levels were significantly decreased, whereas total fat mass and LDL cholesterol, triglyceride, CRP, leptin, and fructosamine levels were significantly increased in untreated Klinefelter’s syndrome patients. In treated Klinefelter’s syndrome patients, LDL cholesterol and adiponectin were significantly decreased, whereas no difference in body composition was found in comparison with untreated Klinefelter’s syndrome patients. Multivariate analyses showed that truncal fat was the major determinant of metabolic syndrome and insulin sensitivity. CONCLUSIONS—The prevalence of metabolic syndrome was greatly increased, whereas insulin sensitivity was decreased in Klinefelter’s syndrome. Both correlated with truncal obesity. Hypogonadism in Klinefelter’s syndrome may cause an unfavorable change in body composition, primarily through increased truncal fat and decreased muscle mass. Testosterone treatment in Klinefelter’s syndrome only partly corrected the unfavorable changes observed in untreated Klinefelter’s syndrome, perhaps due to insufficient testosterone doses.
Although first identified over 70 years ago, Klinefelter syndrome (KS) continues to pose substantial diagnostic challenges, as many patients are still misdiagnosed, or remain undiagnosed. In fact, as few as 25% of patients with KS are accurately diagnosed and most of these diagnoses are not made until adulthood. Classic characteristics of KS include small testes, infertility, hypergonadothropic hypogonadism, and cognitive impairment. However, the pathophysiology behind KS is not well understood, although genetic effects are also thought to play a role. For example, recent developments in genetics and genomics point to a fundamental change in our understanding of KS, with global epigenetic and RNA expression changes playing a central role for the phenotype. KS is also associated with more general health markers, including higher morbidity and mortality rates and lower socioeconomic status (which likely affect both morbidity and mortality). In addition, hypogonadism is associated with greater risk of metabolic syndrome, type 2 diabetes, cardiovascular disease, breast cancer, and extragonadal germ cell tumors. Medical treatment typically focuses on testosterone replacement therapy (TRT), although the effects of this therapy have not been studied rigorously, and future studies need to evaluate the effects of TRT on metabolic risk and neurocognitive outcomes. This review presents a comprehensive interdisciplinary examination of recent developments in genetic, endocrine, and neurocognitive science, including the study of animal models. It provides a number of recommendations for improving the effectiveness of research and clinical practice, including neonatal KS screening programs, and a multidisciplinary approach to KS treatment from childhood until senescence.
Cryopreservation of ovarian tissue is likely to become integrated into the treatment of young women, with cancer, who run a risk of losing their fertility. The full functional lifespan of grafts is still being evaluated, because many of the transplanted women have continued to maintain ovarian activity. Some of our first cases have had tissue functioning for ∼ 10 years.
This study indicates that M. genitalium may be an independent risk factor in the development of an inflammatory process leading to scarring of the uterine tubes in women and thereby causing infertility.
Purpose This study aims to make an account of the children born following transplantation of frozen-thawed ovarian tissue worldwide with specific focus on the perinatal outcome of the children. Furthermore, perinatal outcome of seven deliveries (nine children) from Denmark is reported. Methods PubMed was searched for papers of deliveries resulting from ovarian tissue cryopreservation (OTC). Seven women underwent OTC prior to chemotherapy. Four of these women still had low ovarian function and had tried to conceive. They therefore had tissue autotransplanted to augment their fertility. The other three women had developed premature ovarian insufficiency (POI) after the end of treatment.Results Worldwide, approximately 95 children have been born or will be born in the near future from OTC, including these 9 new children. Information on the perinatal outcome was found on 40 children. The mean gestational age was 39 weeks and the mean birth weight was 3168 g of the singleton pregnancies, which is within internationally recognized normal standards. Furthermore, half the singletons resulted from natural conception and all twins resulted from in vitro fertilization treatment. All seven Danish women became pregnant within 1-3 years after transplantation. They gave birth to nine healthy children. Conclusion The data is reassuring and further suggests that cryopreservation of ovarian tissue is becoming an established fertility preservation method. The seven Danish women reported in this study were all in their early thirties when OTC was performed. Most other reported cases were in the women's twenties. This suggests that the follicular pool in the thirties is large enough and sufficient to sustain fertility.Keywords Fertility preservation . Cryopreservation . Ovarian tissue transplantation . Deliveries IntroductionOvarian tissue cryopreservation (OTC) and transplantation is a relatively new procedure within the area of assisted reproduction technologies (ART). OTC differs from other ART procedures like freezing oocytes or embryos by cryopreserving intact tissue containing small non-growing follicles [1,2]. Although the cryoprotectant media used to freeze ovarian tissue resemble those media used for oocytes and embryos, there are often subtle differences [3,4]. Furthermore, extensive investigations on the effects of cryoprotectants on both human and animal ovarian tissue have not revealed any potential side effects. However, studies in women who had frozen-thawed ovarian tissue transplanted have The original version of this article was revised: There were errors in the Discussion section and the last paragraph should be removed.Capsule The data is reassuring and further suggests that cryopreservation of ovarian tissue is becoming an established fertility preservation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.