Human tumours typically harbour a remarkable number of somatic mutations. If presented on major histocompatibility complex class I molecules (MHCI), peptides containing these mutations could potentially be immunogenic as they should be recognized as 'non-self' neo-antigens by the adaptive immune system. Recent work has confirmed that mutant peptides can serve as T-cell epitopes. However, few mutant epitopes have been described because their discovery required the laborious screening of patient tumour-infiltrating lymphocytes for their ability to recognize antigen libraries constructed following tumour exome sequencing. We sought to simplify the discovery of immunogenic mutant peptides by characterizing their general properties. We developed an approach that combines whole-exome and transcriptome sequencing analysis with mass spectrometry to identify neo-epitopes in two widely used murine tumour models. Of the >1,300 amino acid changes identified, ∼13% were predicted to bind MHCI, a small fraction of which were confirmed by mass spectrometry. The peptides were then structurally modelled bound to MHCI. Mutations that were solvent-exposed and therefore accessible to T-cell antigen receptors were predicted to be immunogenic. Vaccination of mice confirmed the approach, with each predicted immunogenic peptide yielding therapeutically active T-cell responses. The predictions also enabled the generation of peptide-MHCI dextramers that could be used to monitor the kinetics and distribution of the anti-tumour T-cell response before and after vaccination. These findings indicate that a suitable prediction algorithm may provide an approach for the pharmacodynamic monitoring of T-cell responses as well as for the development of personalized vaccines in cancer patients.
1 2 5 4 VOLUME 18 | NUMBER 8 | AUGUST 2012 nAture medicine Therapeutic cancer vaccines hold the promise of combining meaningful efficacy (prolongation of survival) with very good safety and tolerability, as has been shown in several recent randomized trials 1-3 . However, development of cancer vaccines remains a major challenge, with little knowledge of (i) the optimal tumor antigens to target, (ii) suitable agents to counteract regulatory mechanisms opposing successful immunotherapy and (iii) surrogate and predictive biomarkers that can improve our understanding of these regulatory mechanisms and predict a patient's response to therapy. The first major issue addressed in this work is whether relevant HLArestricted peptides for immunotherapeutic intervention in patients with RCC can be identified and clinically validated. We defined the relevance of the antigens as their natural presence on the tumor in the majority of RCC samples, their immunogenicity (induction of T cell responses in clinical studies) and the association of the vaccine-induced T cell responses with clinical benefit. For the identification, selection and preclinical immunological validation of such antigens, we used the antigen discovery platform XPRESIDENT 4,5 to create a multipeptide vaccine designated IMA901 for immunotherapy of RCC. We tested IMA901 in HLA-A*02 + subjects with advanced RCC in two clinical trials, a phase 1 (n = 28) and a randomized phase 2 (n = 68) trial, both of which assessed the association of T cell responses to IMA901 with clinical benefit.
The adult mammalian CNS has a limited capacity for nerve regeneration and structural plasticity. The presence of glia-derived inhibitory factors myelin-associated glycoprotein (MAG) and Nogo-A have been suggested to provide a nonpermissive environment for elongating nerve fibers. In particular, Nogo-A, an integral membrane protein predominantly expressed by oligodendrocytes, has been demonstrated to impair neurite growth in vitro and in vivo. Structure function analysis revealed that Nogo-A protein contains at least two active domains, NiG and Nogo-66, with diverse effects on neurite outgrowth and cell spreading. We now provide evidence that these inhibitory domains mediate their effects via an antagonistic regulation of the small GTPases RhoA and Rac1, resulting in activation of RhoA and suppression of Rac1. By inactivating RhoA with C3 transferase or the downstream effector Rho-kinase ROCK with, the inhibitory effects of both Nogo-A fragments and MAG on neurite outgrowth and oligodendrocyte-mediated growth cone collapse were abolished. Furthermore, we show that the recently cloned receptor for Nogo-66 and MAG, NgR, is not necessary for either NiG- or MAG-induced RhoA activation.
The oral glucose tolerance test (oGTT) is a common tool to provoke a metabolic challenge for scientific purposes, as well as for diagnostic reasons, to monitor the kinetics of glucose and insulin. Here, we aimed to follow the variety of physiological changes of the whole metabolic pattern in plasma during an oGTT in healthy subjects in a nontargeted reversed-phase ultra performance liquid chromatography coupled to electrospray ionization quadrupole time of flight mass spectrometric metabolomics approach. We detected 11,500 metabolite ion masses/individual. Applying multivariate data analysis, four major groups of metabolites have been detected as the most discriminating oGTT biomarkers: free fatty acids (FFA), acylcarnitines, bile acids, and lysophosphatidylcholines. We found in detail 1) a strong decrease of all saturated and monounsaturated FFA studied during the oGTT; 2) a significant faster decline of palmitoleate (C16:1) and oleate (C18:1) FFA levels than their saturated counterparts; 3) a strong relative increase of polyunsaturated fatty acids in the fatty acid pattern at 120 min; and 4) a clear decrease in plasma C10:0, C12:0, and C14:1 acylcarnitine levels. These data reflect the switch from beta-oxidation to glycolysis and fat storage during the oGTT. Moreover, the bile acids glycocholic acid, glycochenodeoxycholic acid, and glycodeoxycholic acid were highly discriminative, showing a biphasic kinetic with a maximum of a 4.5- to 6-fold increase at 30 min after glucose ingestion, a significant decrease over the next 60 min followed by an increase until the end of the oGTT. Lysophosphatidylcholines were also increased significantly. The findings of our metabolomics study reveal detailed insights in the complex physiological regulation of the metabolism during an oGTT offering novel perspectives of this widely used procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.