1 AcknowledgmentsI would like to thank Professor Stefan Bruckner for supervising this thesis and for the great discussions we frequently had giving rise to the solutions presented in this thesis. I would also like to thank Itai Kallos for informative discussions giving insight in the physics behind our light model. In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refractiondespite being an important aspect of light propagation in participating media -has so far only received little attention. In this thesis, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. Propagation of refracted illumination is realized by employing a Semi-Lagrangian backward integration scheme, inspired by texture advection from the field of texture-based flow visualization. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.