Iterative X-ray computed tomography (CT) algorithms have the potential for producing high-quality images but are computationally very demanding, especially when applied to high-resolution problems. Focusing on simultaneous iterative reconstruction technique (SIRT), we provide an eigenvalue based scheme for automatically determining a near-optimal value of the relaxation parameter. This accelerates the convergence rate of SIRT to the point where only half the number of iterations normally required is needed. We also modify the way SIRT uses preconditioning to solve a weighted least squares problem. The resulting algorithm, which we call PSIRT, is associated with a smaller memory footprint and calls for less data to be communicated in a distributed-memory implementation. Experimental residual norm and timing results are provided based on cone-beam micro-CT mouse data, including for an ordered subsets study.
Direct reconstruction of positron emission tomography (PET) data using deep neural networks is a growing field of research. Initial results are promising, but often the networks are complex, memory utilization inefficient, produce relatively small 2-D image slices (e.g., 128 × 128), and low count rate reconstructions are of varying quality. This article proposes FastPET, a novel direct reconstruction convolutional neural network that is architecturally simple, memory space efficient, works for nontrivial 3-D image volumes and is capable of processing a wide spectrum of PET data including low-dose and multitracer applications. FastPET uniquely operates on a histoimage (i.e., image-space) representation of the raw data enabling it to reconstruct 3-D image volumes 67× faster than ordered subsets expectation maximization (OSEM). We detail the FastPET method trained on whole-body and low-dose whole-body data sets and explore qualitative and quantitative aspects of reconstructed images from clinical and phantom studies. Additionally, we explore the application of FastPET on a neurology data set containing multiple different tracers. The results show that not only are the reconstructions very fast, but the images are high quality and have lower noise than iterative reconstructions.
This article presents and validates a newly developed GATE model of the Siemens Inveon trimodal imaging platform. Fully incorporating the positron emission tomography (PET), single-photon emission computed tomography (SPECT), and computed tomography (CT) data acquisition subsystems, this model enables feasibility studies of new imaging applications, the development of reconstruction and correction algorithms, and the creation of a baseline against which experimental results for real data can be compared. Model validation was based on comparing simulation results against both empirical and published data. The PET modality was validated using the NEMA NU-4 standard. Validations of SPECT and CT modalities were based on assessment of model accuracy compared to published and empirical data on the platform. Validation results show good agreement between simulation and empirical data of approximately ± 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.