In this work, we predict the user lifetime within the anonymous and location-based social network Jodel in the Kingdom of Saudi Arabia. Jodel's location-based nature yields to the establishment of disjoint communities country-wide and enables for the first time the study of user lifetime in the case of a large set of disjoint communities. A user's lifetime is an important measurement for evaluating and steering customer bases as it can be leveraged to predict churn and possibly apply suitable methods to circumvent potential user losses. We train and test off the shelf machine learning techniques with 5-fold crossvalidation to predict user lifetime as a regression and classification problem; identifying the Random Forest to provide very strong results. Discussing model complexity and quality tradeoffs, we also dive deep into a time-dependent feature subset analysis, which does not work very well; Easing up the classification problem into a binary decision (lifetime longer than timespan 𝑥) enables a practical lifetime predictor with very good performance. We identify implicit similarities across community models according to strong correlations in feature importance. A single countrywide model generalizes the problem and works equally well for any tested community; the overall model internally works similar to others also indicated by its feature importances.
CCS CONCEPTS• Networks → Online social networks; Location based services; • Computing methodologies → Classification and regression trees.This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.