A phase-field approach describing the dynamics of a strained solid in contact with its melt is developed. Using a formulation that is independent of the state of reference chosen for the displacement field, we write down the elastic energy in an unambiguous fashion, thus obtaining an entire class of models. According to the choice of reference state, the particular model emerging from this class will become equivalent to one of the two independently constructed models on which brief accounts have been given recently [J. Müller and M. Grant, Phys. Rev. Lett. 82, 1736 (1999); K. Kassner and C. Misbah, Europhys. Lett. 46, 217 (1999)]. We show that our phase-field approach recovers the sharp-interface limit corresponding to the continuum model equations describing the Asaro-Tiller-Grinfeld instability. Moreover, we use our model to derive hitherto unknown sharp-interface equations for a situation including a field of body forces. The numerical utility of the phase-field approach is demonstrated by reproducing some known results and by comparison with a sharp-interface simulation. We then proceed to investigate the dynamics of extended systems within the phase-field model which contains an inherent lower length cutoff, thus avoiding cusp singularities. It is found that a periodic array of grooves generically evolves into a superstructure which arises from a series of imperfect period doublings. For wave numbers close to the fastest-growing mode of the linear instability, the first period doubling can be obtained analytically. Both the dynamics of an initially periodic array and a random initial structure can be described as a coarsening process with winning grooves temporarily accelerating whereas losing ones decelerate and even reverse their direction of motion. In the absence of gravity, the end state of a laterally finite system is a single groove growing at constant velocity, as long as no secondary instabilities arise (that we have not been able to see with our code). With gravity, several grooves are possible, all of which are bound to stop eventually. A laterally infinite system approaches a scaling state in the absence of gravity and probably with gravity, too.
Directional solidification of lamellar eutectic structures submitted to uniaxial stress is investigated. In the spirit of an approximation first used by Jackson and Hunt, we calculate the stress tensor for a two-dimensional crystal with triangular surface, using a Fourier expansion of the Airy function. crystal with triangular surface in contact with its melt, given that a uniaxial external stress is applied. The effect of the resulting change in chemical potential is introduced into the standard model for directional solidification of a lamellar eutectic. This calculation is motivated by an observation, made recently [I. Cantat, K. Kassner, C. Misbah, and H. M\"uller-Krumbhaar, Phys. Rev. E, in press] that the thermal gradient produces similar effects as a strong gravitational field in the case of dilute-alloy solidification. Therefore, the coupling between the Grinfeld and the Mullins-Sekerka instabilities becomes strong, as the critical wavelength of the former instability gets reduced to a value close to that of the latter. Analogously, in the case of eutectics, the characteristic length scale of the Grinfeld instability should be reduced to a size not extremely far from typical lamellar spacings. In a Jackson-Hunt like approach we average the undercooling, including the stress term, over a pair of lamellae. Following Jackson and Hunt, we assume the selected wavelength to be determined by the minimum undercooling criterion and compute its shift due to the external stress. we realize the shifting of the wavelength by the application of external stress. In addition, we find that in general the volume fraction of the two solid phases is changed by uniaxial stress. Implications for experiments on eutectics are discussed.Comment: 8 pages RevTex, 6 included ps-figures, accepted for Phys. Rev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.