Chlorine isotope analysis of chlorinated hydrocarbons like trichloroethylene (TCE) is of emerging demand because these species are important environmental pollutants. Continuous flow analysis of noncombusted TCE molecules, either by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) or by GC/quadrupole mass spectrometry (GC/qMS), was recently brought forward as innovative analytical solution. Despite early implementations, a benchmark for routine applications has been missing. This study systematically compared the performance of GC/qMS versus GC/IRMS in six laboratories involving eight different instruments (GC/IRMS, Isoprime and Thermo MAT-253; GC/qMS, Agilent 5973N, two Agilent 5975C, two Thermo DSQII, and one Thermo DSQI). Calibrations of 37 Cl/ 35 Cl instrument data against the international SMOC scale (Standard Mean Ocean Chloride) deviated between instruments and over time. Therefore, at least two calibration standards are required to obtain true differences between samples. Amount dependency of δ 37 Cl was pronounced for some instruments, but could be eliminated by corrections, or by adjusting amplitudes of standards and samples. Precision decreased in the order GC/IRMS (1σ ≈ 0.1%), to GC/qMS (1σ ≈ 0.2À0.5% for Agilent GC/qMS and 1σ ≈ 0.2À0.9% for Thermo GC/qMS). Nonetheless, δ 37 Cl values between laboratories showed good agreement when the same external standards were used. These results lend confidence to the methods and may serve as a benchmark for future applications.
Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions.
A novel in-tube extraction device (ITEX 2) for headspace sampling was evaluated for GC/MS analysis of aqueous samples. Twenty compounds of regulatory and drinking water quality importance were analyzed, including halogenated hydrocarbons, BTEX compounds (benzene, toluene, ethylbenzene, xylenes), fuel oxygenates, geosmin, and 2-methylisoborneol. Five commercially available sorbent traps were compared for their compound specific extraction yield. On the basis of the results, a mixed bed trap was prepared and evaluated. The extraction parameters were optimized to yield maximum sensitivity within the time of a GC run, to avoid unnecessary downtime of the system. Method detection limits of 1-10 ng L(-1) were achieved for volatile organic compounds (VOCs), which is much lower than demands by regulatory limit values. The performance of the ITEX system is similar to that of purge and trap systems, but it requires lower sample volumes and is less prone to contamination, much simpler, more flexible, and affordable. Average relative standard deviations below 10% were achieved for all analytes, and recoveries from spiked tap water samples were between 90% and 103%, mostly. The extraction is nonexhaustive, removing a fraction of 7% to 55% of the target compounds, depending on the air-water partitioning coefficients. The method was also tested with nonsynthetic samples, including tap, pond, and reservoir water and different soft drinks.
Microextraction techniques represent a major part of modern sample preparation in the analysis of organic micropollutants. This article provides a short overview of recent developments in solvent-free microextraction techniques. From the first open-tubular trap techniques in the mid-1980s to recent packed-needle devices, different implementations of in-needle packings for microextraction are discussed with their characteristic benefits, shortcomings and possible sampling modes. Special emphasis is placed on methods providing full automation and solvent exclusion. In this context, in-tube extraction and the needle trap are discussed, with an overview of current research on new sorbent materials, together with the requirements for more efficient method development.
Microextraction techniques, especially dynamic techniques like in-tube extraction (ITEX), can require an extensive method optimization procedure. This work summarizes the experiences from several methods and gives recommendations for the setting of proper extraction conditions to minimize experimental effort. Therefore, the governing parameters of the extraction and injection stages are discussed. This includes the relative extraction efficiencies of 11 kinds of sorbent tubes, either commercially available or custom made, regarding 53 analytes from different classes of compounds. They cover aromatics, heterocyclic aromatics, halogenated hydrocarbons, fuel oxygenates, alcohols, esters, and aldehydes. The number of extraction strokes and the corresponding extraction flow, also in dependence of the expected analyte concentrations, are discussed as well as the interactions between sample and extraction phase temperature. The injection parameters cover two different injection methods. The first is intended for the analysis of highly volatile analytes and the second either for the analysis of lower volatile analytes or when the analytes can be re-focused by a cold trap. The desorption volume, the desorption temperature, and the desorption flow are compared, together with the suitability of both methods for analytes of varying volatilities. The results are summarized in a flow chart, which can be used to select favorable starting conditions for further method optimization.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-015-8854-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.