Stimuli-responsive hydrogels are materials with great potential for development of active functionalities in fluidics and micro-fluidics. Based on the current state of research on pH sensors, hydrogel sensors are described qualitatively and quantitatively for the first time. The review introduces the physical background of the special properties of stimuli-responsive hydrogels. Following, transducers are described which are able to convert the non-electrical changes of the physical properties of stimuli-responsive hydrogels into an electrical signal. Finally, the specific sensor properties, design rules and general conditions for sensor applications are discussed.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.Cover design: eStudio Calamar S.L. The book is completed by a detailed set of solutions to the exercises that accompany each chapter. The exercises force the student to truly understand the basic physical design algorithms and apply them to small but insightful problem instances. This book will serve the EDA and design community well. It will be a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools.Dr. Leon Stok Vice President, Electronic Design Automation IBM Systems and Technology Group Hopewell Junction, NY vi Preface VLSI physical design of integrated circuits underwent explosive development in the 1980s and 1990s. Many basic techniques were suggested by researchers and implemented in commercial tools, but only described in brief conference publications geared for experts in the field. In the 2000s, academic and industry researchers focused on comparative evaluation of basic techniques, their extension to large-scale optimization, and the assembly of point optimizations into multi-objective design flows. Our book covers these aspects of physical design in a consistent way, starting with basic concepts in Chapter 1 and gradually increasing the depth to reach advanced concepts, such as physical synthesis. Readers seeking additional details, will find a number of references discussed in each chapter, including specialized monographs and recent conference publications.Chapter 2 covers netlist partitioning. It first discusses typical problem formulations and proceeds to classic algorithms for balanced graph and hypergraph partitioning. The last section covers an important application -system partitioning among multiple FPGAs, used in the context of high-speed emulation in functional validation.Chapter 3 is dedicated to chip planning, which includes floorplanning, powerground planning and I/O assignment. A broad range of topics and techniques are covered, ranging from graph-theoretical aspects of block-packing to optimization by simulated annealing and package-aware I/O planning.Chapter 4 addresses VLSI placement and covers a number of practical problem formulations. It distinguishes between global and detailed placement, and first covers several algorithmic frameworks traditionally used for global placement. Detailed placement algorithms are covered in a separate section. Current state of the art in placement is reviewed, with suggestions to readers who might want to implement their own software tools for large-scale placement.Chapters 5 and 6 discuss global and detailed routing, which have received significant attenti...
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Three-dimensional ICs promise to significantly extend the scale of system integration and facilitate new-generation electronics. However, progress in commercial 3D ICs has been slow. In addition to technology-related difficulties, industry experts cite the lack of a commercial 3D EDA tool-chain and design standards, high risk associated with a new technology, and high cost of transition from 2D to 3D ICs. To streamline the transition, we explore design styles that reuse existing 2D Intellectual Property (IP) blocks. Currently, these design styles severely limit the placement of Through-Silicon Vias (TSVs) and constrain the reuse of existing 2D IP blocks in 3D ICs. To overcome this problem, we develop a methodology for using TSV islands and novel techniques for clustering nets to connect 2D IP blocks through TSV islands. Our empirical validation demonstrates 3D integration of traditional 2D circuit blocks without modifying their layout for this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.