Background: Mutations in NOD2, a putative intracellular receptor for bacterial peptidoglycans, are associated with a subset of Crohn's disease but the molecular mechanism linking this protein with the disease pathogenesis remains unclear. Human a defensins (HD-5 and HD-6) are antibiotic effector molecules predominantly expressed in Paneth cells of the ileum. Paneth cells also express NOD2. To address the hypothesis that the function of NOD2 may affect expression of Paneth cell defensins, we compared their expression levels with respect to NOD2 mutations in Crohn's disease. Methods: Forty five Crohn's disease patients (24 with NOD2 mutations, 21 with wild-type NOD2) and 12 controls were studied. Real time reverse transcription-polymerase chain reaction was performed with mucosal mRNA for HD-5, HD-6, lysozyme, secretory phospholipase A 2 (sPLA 2 ), tumour necrosis factor a, interleukin 8, and human hypoxanthine phosphoribosyltransferase (housekeeping gene). Immunohistochemistry with anti-HD-5 and histological Paneth cell staining were performed in 10 patients with NOD2 mutations or wild-type genotypes. Results: Ileal expression of HD-5 and HD-6, but not sPLA 2 or lysozyme, were diminished in affected ileum, and the decrease was significantly more pronounced in patients with NOD2 mutations. In the colon, HD-5, HD-6, and sPLA 2 were increased during inflammation in wild-type but not in NOD2 mutated patients. In both the colon and ileum, proinflammatory cytokines and lysozyme were unaffected by NOD2 status. Immunohistochemistry identified Paneth cells as the sole source of HD-5. Conclusion: As alpha defensins are important in the mucosal antibacterial barrier, their diminished expression may explain, in part, the bacterial induced mucosal inflammation and ileal involvement of Crohn's disease, especially in the case of NOD2 mutations.
SummaryThrombin stimulation of human platelets results in the release of a preformed proteinaceous human eosinophil (Eo)-chemotactic activity. By the use of different high-performance liquid chromatography techniques, two Eo-chemotactic polypeptides (EoCPs), tentatively termed EoCP-1 and EoCP-2, were purified to homogeneity. Upon SDS-PAGE analysis, these chemotaxins showed molecular masses near 8 kD. NH2-terminal amino acid sequence analysis revealed identical sequences for both EoCP-1 and EoCP-2, which are also identical to that of R.ANTES, a cytokine that structurally belongs to the interleukin 8 superfamily of leukocyte selective attractants, and that is known to be a "memory-type" T lymphocyte-selective attractant. In the major Eo chemotaxin, EoCP-1, the residues 4 and 5, which in EoCP-2 were found to be serine residues, could not be identified. Electrospray mass spectrometry (ESP-MS) of EoCPs revealed for EoCP-2 a molecular mass of 7,862.8 _+ 1.1 daltons, which is 15.8 mass units higher than the calculated value of RANTES, indicating that EoCP-2 is identical to the full-length cytokine, and oxygenation, probably at methionine residue number 64, has taken place. Upon ESP-MS, EoCP-1 showed an average molecular mass of 8,355 _+ 10 daltons, suggesting O-glycosylation at these serine residues. Both natural forms of RANTES showed strong Eo-chemotactic activity (EDs0 --2 nM) with optimal chemotactic migration at concentrations near 10 nM, however, there were no significant migratory responses with human neutrophils. Chemotactic activity of RANTES for human Eos could be confirmed using recombinant material, which has been found to be as active as the natural forms. Since R.ANTES gene expression has been detected in activated T lymphocytes, and recombinant RANTES was shown to be a "memory" T lymphocyte-selective attractant, it is now tempting to speculate about an important role of R.ANTES in clinical situations such as allergene-induced late-phase skin reactions in atopic subjects or asthma, where in affected tissues both memory T cells and Eos are characteristic.
Human skin is permanently exposed to microorganisms, but rarely infected. One reason for this natural resistance might be the existence of a 'chemical barrier' consisting in constitutively and inducibly produced antimicrobial peptides and proteins (AMPs). Many of these AMPs can be induced in vitro by proinflammatory cytokines or bacteria. Apart from being expressed in vivo in inflammatory lesions, some AMPs are also focally expressed in skin in the absence of inflammation. This suggests that non-inflammatory stimuli of endogenous and/or exogenous origin can also stimulate AMP synthesis without inflammation. Such mediators might be ideal 'immune stimulants' to induce only the innate antimicrobial skin effector molecules without causing inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.