The Rosetta software suite for macromolecular modeling, docking, and design is widely used in pharmaceutical, industrial, academic, non-profit, and government laboratories. Despite its broad modeling capabilities, Rosetta remains consistently among leading software suites when compared to other methods created for highly specialized protein modeling and design tasks. Developed for over two decades by a global community of over 60 laboratories, Rosetta has undergone multiple refactorings, and now comprises over three million lines of code. Here we discuss methods developed in the last five years in Rosetta, involving the latest protocols for structure prediction; protein-protein and protein-small molecule docking; protein structure and interface design; loop modeling; the incorporation of various types of experimental data; modeling of peptides, antibodies and proteins in the immune system, nucleic acids, non-standard chemistries, carbohydrates, and membrane proteins. We briefly discuss improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at www.rosettacommons.org.
Neuropeptide Y (NPY) receptors belong to the G protein-coupled receptor (GPCR) superfamily and play important roles in food intake, anxiety and cancer regulation1,2. The NPY/Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in mammals, namely Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity3. NPY is the most powerful stimulant of food intake and this effect is primarily mediated by Y1 receptor (Y1R)4. A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity4, tumor1 and bone loss5. However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability6. Here we report crystal structures of the human Y1R bound to two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal binding modes of Y1R to several structurally diverse antagonists and determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance (NMR), photo-crosslinking and functional studies, provide insights into the binding behavior of the agonist and for the first time determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery targeting NPY receptors.
Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987–2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable improvements include a substantially improved energy function, an XML-like language termed “RosettaScripts” for flexibly specifying modeling task, new analysis tools, the addition of the TopologyBroker to control conformational sampling, and support for multiple templates in comparative modeling. Rosetta’s ability to model systems with symmetric proteins, membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.