Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with ‘self-healing’ properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer–dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.
Organic fluorophores, which are popular labels for microscopy applications, intrinsically suffer from transient and irreversible excursions to dark-states. An alternative to adding photostabilizers at high concentrations to the imaging buffer relies on the direct linkage to the fluorophore. However, the working principles of this approach are not yet fully understood. In this contribution, we investigate the mechanism of intramolecular photostabilization in self-healing cyanines, in which photodamage is automatically repaired. Experimental evidence is provided to demonstrate that a single photostabilizer, that is, the vitamin E derivative Trolox, efficiently heals the cyanine fluorophore Cy5 in the absence of any photostabilizers in solution. A plausible mechanism is that Trolox interacts with the fluorophore through intramolecular quenching of triplet-related dark-states, which is a mechanism that appears to be common for both triplet-state quenchers (cyclooctatetraene) and redox-active compounds (Trolox, ascorbic acid, methylviologen). Additionally, the influence of solution-additives, such as cysteamine and procatechuic acid, on the self-healing process are studied. The results suggest the potential applicability of self-healing fluorophores in stochastic optical reconstruction microscopy (STORM) with optical super-resolution. The presented data contributes to an improved understanding of the mechanism involved in intramolecular photostabilization and has high relevance for the future development of self-healing fluorophores, including their applications in various research fields.
Fluorescence is a versatile tool for spectroscopic investigations and imaging of dynamic processes and structures across various scientific disciplines. The photophysical performance, that is, signal stability and signal duration, of the employed fluorophores is a major limiting factor. In this Letter, we propose a general concept to covalently link molecules, which are known for their positive effect in photostabilization, to form a combined photostabilizer with new properties. The direct linkage of two (or more) photostabilizers will allow one to obtain combined or synergetic effects in fluorophore stabilization and can simplify the preparation of imaging buffers that would otherwise require a mixture of photostabilizers for optimal performance. This concept was explored by synthesizing a molecule with a reducing and oxidizing moiety that is referred to as internal ROXS or "iROXS". Using single-molecule fluorescence microscopy, inter- and intramolecular healing of iROXS was observed, that is, strongly reduced blinking and increased photostability of the cyanine fluorophore Cy5. Moreover, it is shown that a covalently coupled photostabilizer can replace a mixture of molecules needed to make a functional photostabilizing ROXS buffer and might hence represent the new standard for defined and reproducible imaging conditions in single-molecule experiments. In self-healing fluorophores with intramolecular triplet-state quenching, an unprecedented photostability increase of >100-fold was obtained when using iROXS, which is even competitive with solution-based healing. Control experiments show that the oxidizing part of the iROXS molecule, an aromatic nitro group, dominates the healing process. The suggested synthetic concept and the proof-of-concept experiments represent the starting point for the quest to identify optimal combinations of linked photostabilizers for various fluorescence applications.
A novel DNA‐based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso‐tetrakis(N‐alkylpyridyl)porphyrin was developed. When the N‐methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene‐transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA‐induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA‐based asymmetric catalysis can be expanded into the realm of organometallic chemistry.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.