Associations of endophytic bacterial community composition of oilseed rape (Brassica napus L.) with quantitative resistance against the soil-borne fungal pathogen Verticillium longisporum was assessed by 16S rRNA gene amplicon sequencing in roots and hypocotyls of four plant lines with contrasting genetic composition in regard to quantitative resistance reactions. The plant compartment was found to be the dominating driving factor for the specificity of bacterial communities in healthy plants. Furthermore, V. longisporum infection triggered a stabilization of phylogenetic group abundance in replicated samples suggesting a host genotype-specific selection. Genotype-specific associations with bacterial phylogenetic group abundance were identified by comparison of plant genotype groups (resistant versus susceptible) and treatment groups (healthy versus V. longisporum-infected) allowing dissection into constitutive and induced directional association patterns. Relative abundance of Flavobacteria, Pseudomonas, Rhizobium and Cellvibrio was associated with resistance/susceptibility. Relative abundance of Flavobacteria and Cellvibrio was increased in resistant genotypes according to their known ecological functions. In contrast, a higher relative abundance of Pseudomonas and Rhizobium, which are known to harbor many species with antagonistic properties to fungal pathogens, was found to be associated with susceptibility, indicating that these groups do not play a major role in genetically controlled resistance of oilseed rape against V. longisporum.
A prototype for the automated thin-film microextraction of pharmaceuticals from aqueous solutions has been developed and is presented here for the first time. With a software-controlled setup, extraction methods for ivermectin and iohexol have been developed. The widely used antiparasitic agent ivermectin is non-polar and has a high tendency to sorb to surfaces. In contrast to this, the nonionic but polar iodinated X-ray contrast agent iohexol is freely water soluble. With these two substances, a wide range of polarity is covered. Sorption kinetics and thermodynamics of ivermectin and iohexol were studied. With the presented passive sampling approach, it was possible to extract up to 96.2% ivermectin with a C-phase within 1 h and up to 74.6% of iohexol with a PS-DVB phase within 36 h out of water. Using abamectin as internal standard, it was possible to quantitatively follow dissipation of ivermectin in a simulated surface water experiment. Predominantly, the newly developed prototype can be used for automated and time-resolved extraction of xenobiotics from waterbodies under field conditions, for the extraction of substances under laboratory conditions as an alternative to the elaborate solid-phase extraction, and for the automated control of chemical reaction kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.