Many active organic compounds and organic effect materials are poorly soluble in water, or even insoluble. Aqueous forms of application thus require special formulation techniques to utilize or optimize the physiological (pharmaceuticals, cosmetics, plant protection, nutrition) or technical (varnishes, printing inks, toners) action. The most interesting properties of nanodispersions of active organic compounds and effect materials include the impressive increase in solubility, the improvement in biological resorption, and the modification of optical, electrooptical, and other physical properties which are achievable only with particle sizes in the middle or lower nanometer range (50–500 nm). Hence in addition to economic and ecological constraints there are also technical demands which appear to urgently require the development of new processes for the production of organic nanoparticles as alternatives to the established mechanical milling processes. In this context attention is drawn to the recent increase in research activities which have as their objective the continuous, automatic preparation of nanodispersed systems by precipitation from molecular solution. In this review the current state of knowledge of the fundamentals of particle formation from homogeneous solution and the effect of solvent and polymer additives on the morphology and supramolecular structure of the nanoparticle will be discussed. The practical implementation of this new formulation technology will be explored in detail for the carotenoids, a class of compounds of both physiological and technical interest.
Phase separation can be induced in a colloidal dispersion by adding non-adsorbing polymers. Depletion of polymer around the colloidal particles induces an effective attraction, leading to demixing at sufficient polymer concentration. This communication reviews theoretical and experimental work carried out on the polymer-mediated attraction between spherical colloids and the resulting phase separation of the polymer-colloid mixture. Theoretical studies have mainly focused on the limits where polymers are small or large as compared to the colloidal size. Recently, however, theories are being developed that cover a wider colloid-polymer size ratio range. In practical systems, size polydispersity and polyelectrolytes (instead of neutral polymers) and/or charges on the colloidal surfaces play a role in polymer-colloid mixtures. The limited amount of theoretical work performed on this is also discussed. Finally, an overview is given on experimental investigations with respect to phase behavior and results obtained with techniques enabling measurement of the depletion-induced interaction potential, the structure factor, the depletion layer thickness and the interfacial tension between the demixed phases of a colloid-polymer mixture.
The droplet size distribution of an emulsion governs emulsion properties such as long-term stability, texture and optical appearance. Consequently, means to control the droplet size during emulsification are of interest when well-defined emulsion properties are needed. In this work, we study emulsions consisting of water, paraffin oil and a mixture of non-ionic surfactants and fatty alcohols by means of laser light scattering. We investigate the influence of the route of preparation as well as the surfactant concentration on the droplet size distribution. Above a critical surfactant-to-oil ratio and following the standard way of emulsion phase inversion, a significant amount of oil droplets with diameters less than 1 m were obtained. When changing the way of emulsification and thereby avoiding a phase inversion to occur, such fine droplets are absent and the droplet size distribution is solely governed by the input of mechanical energy. We demonstrate that emulsification by the phase inversion method makes use of two effects for the achievement of finely dispersed oil-in-water emulsions. The lamellar or bicontinuous structure formed by the surfactant at the inversion point determines the size of the resulting droplets while the corresponding minimal interfacial tension facilitates the droplet formation, explaining why the droplet size distribution only depends on the weight ratio between surfactant and oil rather than on the water concentration.
Being composed of crystalline lamellae and entangled amorphous polymeric chains in between, semicrystalline polymers always show a complicated deformation behavior under tensile deformation. In recent years, the process of tensile deformation was found to exhibit several regimes: intralamellar slipping of crystalline blocks occurs at small deformation whereas a stress-induced crystalline block disaggregation-recrystallization process occurs at a strain larger than the yield strain. The strain at this transition point is related to the interplay between the amorphous entanglement density and the stability of crystal blocks. We report experimental evidence from true stress-strain experiments that support this argument. It is emphasized that tie molecules, which connect adjacent lamellae, are of lesser importance with respect to the deformational behavior.
The formation of CaCO3 is usually discussed within the classical picture of crystallization, i.e. assuming that the formation of CaCO3 crystals proceeds via nucleation and growth. This may be true for the case of low supersaturation. In this work it is shown that the formation process is far more complex at high supersaturation, i.e. during precipitation. New insight into the mechanisms of precipitation is obtained by analyzing structure formation with a time resolution down to the millisecond range from the initiation of the reaction. The techniques used are scanning electron microscopy, electron diffraction, X-ray microscopy and cryo-transmission electron microscopy combined with a special quenching technique. It is seen that upon mixing CaCl2 and Na2CO3 solutions (0.01 M) first an emulsion-like structure forms. This structure decomposes to CaCO3-nanoparticles. These nanoparticles aggregate to form vaterite spheres of some micrometers in diameter. The spheres transform via dissolution and recrystallization to calcite rhombohedra. Once a suitable amount of additive, in our case polycarboxylic acid, is present during the precipitation the nanoparticles are stabilized against compact aggregation; instead they form flocs. This stabilization is either of a temporary nature if the amount of polymer is insufficient to cover the surface of the nanoparticles formed or more long lived if there is enough polymeric material present. By means of Ca-activity measurements it can be shown that the polymers are partially incorporated into the forming crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.