Base excess, base excess caused by unmeasured anions, and anion gap are good predictors of hyperlactatemia (>5 mmol/L). Acid-base variables and, specifically, "unmeasured anions" (anion gap, anion gap corrected, base excess caused by unmeasured anions, strong ion gap), irrespective of the methods used to calculate them, are not accurate predictors of hospital mortality rate in critically ill patients.
Correspondence: Rinaldo Bellomo, rinaldo.bellomo@armc.org.au AG = anion gap; APACHE = Acute Physiology and Chronic Health Evaluation; ARF = acute renal failure; ICU = intensive care unit; SIDa = apparent strong ion difference; SIDe = effective strong ion difference.
AbstractIntroduction The aim of the present study is to understand the nature of acid-base disorders in critically ill patients with acute renal failure (ARF) using the biophysical principles described by Stewart and Figge. A retrospective controlled study was carried out in the intensive care unit of a tertiary hospital. Materials and methods Forty patients with ARF, 40 patients matched for Acute Physiology and Chronic Health Evaluation II score (matched control group), and 60 consecutive critically ill patients without ARF (intensive care unit control group) participated. The study involved the retrieval of biochemical data from computerized records, quantitative biophysical analysis using the Stewart-Figge methodology, and statistical comparison between the three groups. We measured serum sodium, potassium, magnesium, chloride, bicarbonate, phosphate, ionized calcium, albumin, lactate and arterial blood gases. Results Intensive care unit patients with ARF had a mild acidemia (mean pH 7.30 ± 0.13) secondary to metabolic acidosis with a mean base excess of -7.5 ± 7.2 mEq/l. However, one-half of these patients had a normal anion gap. Quantitative acid-base assessment (Stewart-Figge methodology) revealed unique multiple metabolic acid-base processes compared with controls, which contributed to the overall acidosis. The processes included the acidifying effect of high levels of unmeasured anions (13.4 ± 5.5 mEq/l) and hyperphosphatemia (2.08 ± 0.92 mEq/l), and the alkalinizing effect of hypoalbuminemia (22.6 ± 6.3 g/l). Conclusions The typical acid-base picture of ARF of critical illness is metabolic acidosis. This acidosis is the result of the balance between the acidifying effect of increased unmeasured anions and hyperphosphatemia and the lesser alkalinizing effect of hypoalbuminemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.