The genome of equine herpesvirus type 1 (EHV-1) strain RacL11, a highly virulent isolate obtained from an aborted foal, and that of the modified live vaccine strain KyA, were cloned as bacterial artificial chromosomes (BAC) in Eseherichia coli. Mini F plasmid sequences were inserted into the viral genomes by homologous recombination instead of the gene 71 (EUS4) open reading frame after co-transfection of viral DNA and recombinant plasmid pdelta71-pHA2 into RK13 cells. After isolation of recombinant viruses by three rounds of plaque purification, viral DNA was isolated from RK13 cells infected with RacL11 or KyA virus mutants expressing the green fluorescent protein (GFP), and electroporated into Escherichia coli DH10B cells. Several bacterial colonies were shown to contain high-molecular weight BAC DNA with a restriction enzyme fragment pattern indicative of the presence of full-length RacL11 or KyA genomes. Two selected BAC clones were analysed by restriction enzyme analysis and Southern blotting, and were eventually termed pRacLI I and pKyA. respectively. Upon transfection of pRacL11 or pKyA DNA into RK13 cells, GFP-expressing fluorescing virus plaques could be identified from day 1 after transfection. Infectivity after transfection of pRacL11 or pKyA could be readily propagated on RK13 or equine cells, indicating that infectious full-length DNA clones of strains RacL11 and KyA were successfully cloned in Escherichia coli as BACs. The glycoprotein 2-negative progeny reconstituted from pRacL11 and pKyA (L11deltagp2 and KyAdeltagp2) exhibited different growth properties. Whereas both L11deltagp2 and KyAdeltagp2 extracellular titres were reduced by 15- to 32-fold, plaque diameters were only markedly (50%) reduced in the case of KyAdeltagp2.
Experiments were conducted to analyze the effects of a simultaneous deletion of glycoprotein M (gM) and glycoprotein 2 (gp2) of equine herpesvirus type 1 (EHV-1). EHV-1 strain RacH was cloned as a bacterial artificial chromosome (pRacH) by homologous recombination of a mini F plasmid into the unique short region of the genome, thereby deleting gene 71 encoding gp2. Upon transfection of the pRacH DNA into rabbit kidney RK13 cells, virus plaques were visible from day 1 after transfection. The mutant RacH virus (H Delta gp2) reconstituted from pRacH lacked gene 71 and did not express gp2 as assayed by indirect immunofluorescence analysis using gp2-specific monoclonal antibodies. The H Delta gp2 virus exhibited 10-fold reduced extracellular titers and an approximately 10% reduction in mean plaque diameters when compared to parental or gp2-revertant virus. The gM open reading frame was deleted from pRacH by recE/T mediated mutagenesis in Escherichia coli. The gM-gp2 double negative virus mutant (H Delta gp2gM) did not express either of the deleted glycoproteins as demonstrated by indirect immunofluorescence analysis. The H Delta gp2gM virus exhibited a 200-fold reduction of end-point extracellular titers when compared to parental RacH virus, which could not be compensated for by growth of the mutant virus on gM-expressing cells. After restoration of the gM open reading frame, however, growth of the mutant virus was comparable to the H Delta gp2 virus. Plaque diameters of the gM-gp2 double-negative mutant were reduced by only 16% when compared to that of parental RacH virus. From the results it was concluded that the simultaneous absence of gM and gp2 had an additive effect on egress but not secondary envelopment or cell-to-cell spread of EHV-1.
The functional cooperation of equine herpesvirus 1 (EHV-1) glycoprotein M (gM) and the gene 10 (UL49.5) product was analyzed. Transient-transfection experiments using gM and UL49.5 expression plasmids as well as RK13 cell lines constitutively expressing UL49.5 (RK49.5) or gM (RKgM) demonstrated that the endo--N-acetylglucosaminidase H (endo H)-resistant mature form of gM was detectable only after coexpression of the two proteins. Deletion of the EHV-1 UL49.5-homologous gene 10 in strain KyA resulted in a small-plaque phenotype and up to 190-fold-reduced virus titers. The growth defects of the mutant KyA⌬49.5 virus, which were very similar to those of a gM-negative KyA virus, could be completely compensated for by growth of the mutant virus on RK49.5 cells or by repairing the deletion of gene 10 in the revertant virus KyA⌬49.5R. Analysis of cells infected with the UL49.5-negative EHV-1 demonstrated that gM was not transported to the trans-Golgi network in the absence of the UL49.5 product. In contrast, gM was efficiently transported and processed to the endo H-resistant mature form in KyA⌬49.5-infected RK49.5 cells. Furthermore, radioimmunoprecipitation experiments demonstrated that gM maturation was observed only if a 10,000-M r protein was coprecipitated with gM in KyA-or KyA⌬49.5R-infected cells or virions. This protein was absent in cells infected with Ky⌬49.5 or KyA⌬gM, suggesting that it was the EHV-1 UL49.5 product. Taken together, our results demonstrate that the expression of the EHV-1 UL49.5 product is necessary and sufficient for gM processing and that it is required for efficient virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.