Non-contact atomic force microscopy (NC-AFM) at true atomic resolution is used to investigate the (110) surface of rutile TiO 2. We are able to simultaneously resolve both bridging oxygen and titanium atoms of this prototypical oxide surface. Furthermore, the characteristic defect species, i.e. bridging oxygen vacancies, single and double hydroxyls as well as subsurface defects, are identified in the very same frame. We employ density functional theory (DFT) calculations to obtain a comprehensive understanding of the relation between the tip apex structure and the observed image contrast. Our results provide insight into the physical mechanisms behind atomic-scale contrast, indicating that electrostatic interaction can lead to a far more complex contrast than commonly assumed.
Molecular self-assembly is employed for creating unidirectional molecular nanostructures on a truly insulating substrate, namely the (101 j 4) cleavage plane of calcite. The molecule used is racemic heptahelicene-2-carboxylic acid, which forms structures, well-aligned along the [010] crystallographic direction and stable at room temperature. Precise control of both molecule-substrate and molecule-molecule interaction is required, leading to the formation of such wire-like structures of well-defined width and lengths exceeding 100 nm. This subtle balance is governed by the heptahelicene-2-carboxylic acid used in this study, allowing for both hydrogen bond formation as well as π-π stacking.
Non-contact atomic force microscopy is used to study C(60) molecules deposited on the rutile TiO(2)(110) surface in situ at room temperature. At submonolayer coverages, molecules adsorb preferentially at substrate step edges. Upon increasing coverage, ordered islands grow from the decorated step edges onto the lower terraces. Simultaneous imaging of bridging oxygen rows of the substrate and the C(60) island structure reveals that the C(60) molecules arrange themselves in a centered rectangular superstructure, with the molecules lying centered in the troughs formed by the bridging oxygen rows. Although the TiO(2)(110) surface exhibits a high density of surface defects, the observed C(60) islands are of high order. This indicates that the C(60) intermolecular interaction dominates over the molecule-substrate interactions that may cause structural perturbations on a defective surface. Slightly protruding C(60) strands on the islands are attributed to anti-phase boundaries due to stacking faults resulting from two islands growing together.
The adsorption of 3,4,9,10-perylene tetracarboxylic diimide derivative molecules on the rutile TiO 2 ͑110͒ surface was investigated by noncontact atomic force microscopy and density-functional theory ͑DFT͒ calculations. After submonolayer deposition, individual molecules are observed to adsorb with their main axis aligned along the ͓001͔ direction and centered on top of the bridging oxygen rows. Depending on the tip termination, two distinctly different molecular contrasts are achieved. In the first mode, the molecules are imaged as bright elongated features, while in another mode the molecules appear with a bright rim and a dark bow-shaped center. Comparison with the defect density on the bare TiO 2 ͑110͒ surface suggests that the molecules preferentially anchor to surface defects. Our DFT calculations reveal details of the molecular adsorption position, confirming the experimentally observed adsorption on top of the bridging oxygen rows. The DFT results indicate that diffusion along the rows should be quite easily possible, while diffusion perpendicular to the rows seems to be hindered by a significant energy barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.