Gears manufactured by blanking can be found in many different products like hammer drills or automobiles. Here, only the functional surface, the clean shear, can be used to transmit torque. Therefore, parts in serial production demand a high amount of clean shear, so the required torque can be transmitted with a minimal thickness and part weight. To achieve this, these parts are usually manufactured by fineblanking or related Near-Net-Shape Blanking processes (NNSBPs). Furthermore, the gears are subjected to cyclic loading which can, especially in the highly stressed tooth root, lead to tooth breakage. The effect of different process variants and process parameters on the residual stresses and the fatigue behavior under a pulsating bending load has not been investigated yet. Due to the potential of endurance improvement of blanked gears, this topic is addressed in this paper. To accomplish this, C-shaped profiles are manufactured by five different Near-Net-Shape blanking processes. The investigated processes are fineblanking, precision blanking with and without blank holder, and blanking with a small die clearance with and without a v-ring. The sheet metal material, S355MC (material number 1.0976) with a thickness of 6 mm, is first subjected to a stress relief heat treatment to minimize residual stresses induced by the specimen preparation and to ensure a defined initial residual stress state. After blanking, the residual stresses of the parts are measured. Finally, fatigue strength tests are carried out under a pulsating bending load on the C-shaped profiles with shear-cut edges. The results show that the residual stress state, as well as the part’s fatigue behavior are strongly influenced by the chosen blanking process.
The family of bulk forming technologies comprises processes characterised by a complex three-dimensional stress and strain state. Besides shape and material properties, also residual stresses are modified during a bulk metal forming process. The state of residual stresses affects important properties, like fatigue behaviour and corrosion resistance. An adjustment of the residual stresses is possible through subsequent process steps such as heat treatments or mechanical surface modification technologies, like shot peening and deep rolling. However, these additional manufacturing steps involve supplementary costs, longer manufacturing times and harmful effects on the product quality. Therefore, an optimized strategy consists in a targeted introduction of residual stresses during the forming processes. To enable this approach, a fundamental understanding of the underlying mechanisms of residual stress generation in dependence of the forming parameters is necessary. The current state of the art is reviewed in this paper. Strategies for the manipulation of the residual stresses in different bulk forming processes are classified according to the underlying principles of process modification.
In this article, we study the fracture characteristics of inorganically-bound foundry cores. It will be shown that the fracture stress of inorganic cores follows Weibull’s strength distribution function for brittle materials. Using three-point and four-point-bending experiments, the volume dependence of the bending fracture stress is analyzed and a Weibull model fitted. Furthermore, the fracture stress of arbitrary bending experiments can be calculated based on the Weibull parameters found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.