Background Grapevine cultivars of the Pinot family represent clonally propagated mutants with major phenotypic and physiological differences, such as different colour or shifted ripening time, as well as changes in important viticultural traits. Specifically, the cultivars ‘Pinot Noir’ (PN) and ‘Pinot Noir Precoce’ (PNP, early ripening) flower at the same time, but vary in the beginning of berry ripening (veraison) and, consequently, harvest time. In addition to genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible regulatory genes that affect the timing of veraison onset, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and over two separate years. Results The difference in the duration of berry formation between PN and PNP was quantified to be approximately two weeks under the growth conditions applied, using plant material with a proven PN and PNP clonal relationship. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the timing of veraison onset. Functional annotation of these DEGs fit to observed phenotypic and physiological changes during berry development. In total, we observed 3,342 DEGs in 2014 and 2,745 DEGs in 2017 between PN and PNP, with 1,923 DEGs across both years. Among these, 388 DEGs were identified as veraison-specific and 12 were considered as berry ripening time regulatory candidates. The expression profiles revealed two candidate genes for ripening time control which we designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively). These genes likely contribute the phenotypic differences observed between PN and PNP. Conclusions Many of the 1,923 DEGs show highly similar expression profiles in both cultivars if the patterns are aligned according to developmental stage. In our work, putative genes differentially expressed between PNP and PN which could control ripening time as well as veraison-specific genes were identified. We point out connections of these genes to molecular events during berry development and discuss potential candidate genes which may control ripening time. Two of these candidates were observed to be differentially expressed in the early berry development phase. Several down-regulated genes during berry ripening are annotated as auxin response factors / ARFs. Conceivably, general changes in auxin signaling may cause the earlier ripening phenotype of PNP.
BackgroundGrapevine cultivars of the Pinot family represent in the broader sense clonally propagated mutants with clear-cut phenotypes, such as different color or shifted ripening time, that result in major phenotypic and physiological differences as well as changes in important viticultural traits. Specifically, the cultivars ‘Pinot Noir’ (PN) and ‘Pinot Noir Precoce’ (PNP, early ripening) flower at the same time, but vary for the beginning of berry ripening (véraison) and consequently for the harvest time. Apart from the genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible ripening-regulatory genes affecting the timing of the start of ripening, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and in two years.ResultsThe difference in the duration of berry formation between PN and PNP was quantified to be about two weeks under the growth conditions applied, using plant material with a proven clonal relationship of PN and PNP. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the beginning of ripening at the level of gene expression profiles. Functional annotation of these DEGs fits to phenotypic and physiological changes during berry development. In total, we observed between PN and PNP 3,342 DEGs in 2014 and 2,745 DEGs in 2017. The intersection of both years comprises 1,923 DEGs. Among these, 388 DEGs were identified as véraison-specific and 12 were considered as candidates for a regulatory effect on berry ripening time. The expression profiles revealed two candidate genes for Ripening Time Control, designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively) that may contribute to controlling the phenotypic difference between PN and PNP.ConclusionsMany of the 1,923 DEGs identified show highly similar expression profiles in both cultivars as far as accelerated berry formation of PNP is concerned. Putative ripening-regulatory genes differentially expressed between PNP and PN as well as véraison-specific genes were identified. We point out potential connections of these genes to molecular events during berry development and discuss potential ripening time controlling candidate genes, two of which are already differentially expressed in the early berry development phase. Several down-regulated genes are annotated to encode auxin response factors / ARFs. Conceivably, changes in auxin signaling may realize the earlier ripening phenotype of PNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.