Fabrication of surface reliefs is achieved by raster scanning dry photopolymer films under a focused laser beam. The formation of the structure takes place subsequent to illumination without any chemical treatment or wet processing. Computer-generated optical elements can be recorded quickly, easily, and at low cost. The technology is particularly well suited for rapid prototyping and design purposes. These photopolymer films have potential in photonics applications, such as diffractive optical elements and waveguide structures.
The mask plays a significant role as an active optical element in lithography, for both deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography. Mask-induced and feature-dependent shifts of the best-focus position and other aberration-like effects were reported both for DUV immersion and for EUV lithography. We employ rigorous computation of light diffraction from lithographic masks in combination with aerial image simulation to study the root causes of these effects and their dependencies from mask and optical system parameters. Special emphasis is put on the comparison of transmission masks for DUV lithography and reflective masks for EUV lithography, respectively. Several strategies to compensate the mask-induced phase effects are discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.