Quantum gases of rare-earth elements are of interest due to the large magnetic moment of many of those elements, leading to strong dipole-dipole interactions, as well as an often nonvanishing orbital angular momentum in the electronic ground state, with prospects for long coherence time Raman manipulation, and state-dependent lattice potentials. We report on the realization of a Bose-Einstein condensate of erbium atoms in a quasielectrostatic optical dipole trap generated by a tightly focused midinfrared optical beam derived from a CO2 laser near 10.6 µm in wavelength. The quasistatic dipole trap is loaded from a magneto-optic trap operating on a narrow-line erbium laser cooling transition near 583 nm in wavelength. Evaporative cooling within the dipole trap takes place in the presence of a magnetic field gradient to enhance the evaporative speed, and we produce spin-polarized erbium Bose-Einstein condensates with 3 × 10 4 atoms.
The erbium atomic system is a promising candidate for an atomic Bose-Einstein condensate of atoms with a non-vanishing orbital angular momentum (L = 0) of the electronic ground state. In this paper we report on the frequency stabilization of a blue external cavity diode laser system on the 400.91 nm laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy is applied within a hollow cathode discharge tube to the corresponding electronic transition of several of the erbium isotopes. Using the technique of frequency modulation spectroscopy, a zero-crossing error signal is produced to lock the diode laser frequency on the atomic erbium resonance. The latter is taken as a reference laser to which a second main laser system, used for laser cooling of atomic erbium, is frequency stabilized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.