Hydrolysis of glucosylceramide by j-glucocerebrosidase results in ceramide, a critical component of the intercellular lamellae that mediate the epidermal permeability barrier. A subset of type 2 Gaucher patients displays ichthyosiform skin abnormalities, as do transgenic Gaucher mice homozygous for a null allele. To investigate the relationship between glucocerebrosidase deficiency and epidermal permeability barrier function, we compared the stratum corneum (SC) ultrastructure, lipid content, and barrier function of Gaucher mice to carrier and normal mice, and to hairless mice treated topically with bromoconduritol B epoxide (BrCBE), an irreversible inhibitor of glucocerebrosidase. Both Gaucher mice and BrCBE-treated mice revealed abnormal, incompletely processed, lamellar body-derived sheets throughout the SC interstices, while transgenic carrier mice displayed normal bilayers. The SC of a severely affected type 2 Gaucher's disease infant revealed similarly abnormal ultrastructure. Furthermore, the Gaucher mice demonstrated markedly elevated transepidermal water loss (4.2±0.6 vs < 0.10 g/m2 per h). The electron-dense tracer, colloidal lanthanum, percolated between the incompletely processed lamellar body-derived sheets in the SC interstices of Gaucher mice only, demonstrating altered permeability barrier function. Gaucher and BrCBE-treated mice showed < 1% and < 5% of normal epidermal glucocerebrosidase activity, respectively, and the epidermis/SC of Gaucher mice demonstrated elevated glucosylceramide (5-to 10-fold), with diminished ceramide content. Thus, the skin changes observed in Gaucher mice and infants may result from the formation of incompetent intercellular lamellar bilayers due to a decreased hydrolysis of glucosylceramide to ceramide. Glucocerebrosidase therefore appears necessary for the generation of membranes of sufficient functional competence for epidermal barrier function. (J.
Endogenous antioxidants are decreased in skin and blood during UV exposure. Combined supplementation of β-carotene, α-tocopherol and ascorbic acid in addition to topical sunscreens may help to lower the risk of sunburning. Acute UV erythema with sunburn reaction are the most important factors in conjunction with the cumulative life-long UV dose for inducing skin damage resulting in photoageing and precancerous and cancerous lesions. Therefore, a clinical, randomized, double-blind, parallel group, placebo-controlled study was conducted in healthy young female volunteers (skin type II) investigating the preventive, photoprotective effect of supplementation with Seresis®, an antioxidative combination containing both lipid and water-soluble compounds: carotenoids (β-carotene and lycopene), vitamins C and E, selenium and proanthocyanidins. In this study, the oral administration of Seresis appeared to be well tolerated. The preparation contains antioxidant compounds in quantities occurring at physiological levels and can therefore be used safely over a long period of time. Despite the fact that the assessment of the light sensitivity (minimal erythemal dose, chromametry) of the skin did not show any statistically significant differences between the Seresis and the placebo group, a clear statistical trend, however, could be demonstrated, i.e. Seresis was able to slow down the time of the development and grade of UVB-induced erythema. The primary efficacy parameter matrix metalloproteinases 1 (MMP-1) between treatment and placebo group following UV irradiation showed a significant difference (p < 0.05), which occurred due to the fact that after a 2-week UV irradiation, MMP-1 slightly increased (p < 0.03) in the placebo group and decreased (p < 0.044) in the treated group. The MMP-9 changes showed a clear tendency of decrease in the Seresis group (p < 1.393) and increase (p < 0.048) in the placebo group. These data emphasise that supplementation with Seresis decreases the UV-induced expression of MMP-1 and 9, which might be important in photoprotective processes. From our data, we thus finally draw the conclusion that by the combination of antioxidants, such as in the formulation of Seresis, a selective protection of the skin against irradiation can be achieved. This might be important for future recommendations for immediate suppression of the early phase of UV-induced erythema, that means pharmacological prevention of sunburn reaction as well as subsequent chronic skin damage.
UV irradiation of the human skin leads to induction of oxidative stress and inflammation mediated by reactive oxygen radicals, lipid peroxidation, liberation of arachidonic acid from membrane phospholipids and formation of prostaglandins and leucotrienes. We investigated ‘lipid mediators’, such as F2-isoprostanes (8-iso-PGF2α, 9α,11α-PGF2α) and monohydroxyeicosatetraenoic acids (HETEs)in the dermal interstitial fluid obtained by a cutaneous microdialysis technique. Defined areas on the volar forearm of 10 healthy volunteers were exposed to UVB irradiation (20–60 mJ/cm2). Microdialysis membranes were cutaneously inserted beneath the irradiated area. The probes were perfused with isotonic saline solution, and microdialysate samples were collected at 20-min intervals up to 4–5 h. Oxidized arachidonic acid derivatives (2-, 3-, 5-, 8–12- and 15-HETEs, 8-iso-PGF2α and 9α,11α-PGF2α) could be detected and quantified in microdialysates of normal skin in the picomole (HETEs) and femtomole (isoprostanes) range and after UVB irradiation using sensitive gas chromatography-mass spectrometry/negative ion chemical ionization. UVB irradiation enhanced the levels of 8-iso-PGF2α after 24 h significantly, whereas the HETE levels were slightly increased within shorter time intervals (3 h after UVB irradiation). Further investigations have to show whether these new findings are relevant to validate therapeutic strategies for topical and systemic UV prevention agents or for monitoring of specific therapeutic strategies in inflammatory skin disorders.
DF (1998) Isolation of a cDNA encoding a novel member of the transglutaminase gene family from human keratinocytes. Detection and identification of transglutaminase gene products based on reverse transcription-polymerase chain reaction with degenerate primers. J Biol Chem 273:3452-60 Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM (2003) Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem 278:23834-41 Ahvazi B, Boeshans KM, Idler W, Baxa U, Steinert PM, Rastinejad F (2004a) Structural basis for the coordinated regulation of transglutaminase 3 by guanine nucleotides and calcium/ magnesium. J Biol Chem 279:7180-92 Ahvazi B, Boeshans KM, Rastinejad F (2004b) The emerging structural understanding of transglutaminase 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.