In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.
BackgroundPhenylketonuria (PKU) is often considered as the classical example of a genetic disorder in which severe symptoms can nowadays successfully be prevented by early diagnosis and treatment. In contrast, untreated or late-treated PKU is known to result in severe intellectual disability, seizures, and behavioral disturbances. Rarely, however, untreated or late-diagnosed PKU patients with high plasma phenylalanine concentrations have been reported to escape from intellectual disability. The present study aimed to review published cases of such PKU patients.MethodsTo this purpose, we conducted a literature search in PubMed and EMBASE up to 8th of September 2017 to identify cases with 1) PKU diagnosis and start of treatment after 7 years of age; 2) untreated plasma phenylalanine concentrations ≥1200 μmol/l; and 3) IQ ≥80. Literature search, checking reference lists, selection of articles, and extraction of data were performed by two independent researchers.ResultsIn total, we identified 59 published cases of patients with late-diagnosed PKU and unexpected favorable outcome who met the inclusion criteria. Although all investigated patients had intellectual functioning within the normal range, at least 19 showed other neurological, psychological, and/or behavioral symptoms.ConclusionsBased on the present findings, the classical symptomatology of untreated or late-treated PKU may need to be rewritten, not only in the sense that intellectual dysfunction is not obligatory, but also in the sense that intellectual functioning does not (re)present the full picture of brain damage due to high plasma phenylalanine concentrations. Further identification of such patients and additional analyses are necessary to better understand these differences between PKU patients.Electronic supplementary materialThe online version of this article (10.1186/s13023-018-0890-7) contains supplementary material, which is available to authorized users.
Background
Brominated flame retardants (BFRs) have been in widespread use in a vast array of consumer products since the 1970s. The metabolites of some BFRs show a structural similarity to thyroid hormones and experimental animal studies have confirmed that they may interfere with thyroid hormone homeostasis. A major concern has been whether intrauterine exposure to BFRs may disturb thyroid homeostasis since the fetal brain is particularly susceptible to alterations in thyroid hormones. However, few reports on newborns have been published to date.
Objectives
To evaluate the association between BFRs and neonatal thyroid-stimulating hormone (TSH).
Methods
We studied six polybrominated diphenyl ethers (PBDEs) measured in milk samples from 239 women who were part of the “Norwegian Human Milk Study” (HUMIS), 2003–2006. Hexabromocyclododecane (HBCD) and BDE-209 were measured in a subset of the women (193 and 46 milk samples, respectively). The milk was sampled at a median of 33 days after delivery. TSH was measured in babies three days after delivery as part of the routine national screening program for early detection of congenital hypothyroidism. Additional information was obtained through the Medical Birth Registry and questionnaires to the mothers.
Results
The PBDE concentrations in human milk in Norway were comparable to concentrations reported from other European countries and Asia, but not the US and Canada where levels are approximately one order of magnitude higher. We observed no statistically significant associations between BDE-47, 99, 153, 154, 209 and HBCD in human milk and TSH in models adjusted for possible confounders and other environmental toxicants including polychlorinated biphenyls (PCBs).
Conclusions
We did not observe an association between TSH and exposure to HBCD and PBDEs within the exposure levels observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.