In this paper we study the asymptotic properties of the adaptive Lasso estimate in high dimensional sparse linear regression models with heteroscedastic errors. It is demonstrated that model selection properties and asymptotic normality of the selected parameters remain valid but with a suboptimal asymptotic variance. A weighted adaptive Lasso estimate is introduced and is investigated. In particular, it is shown that the new estimate performs consistent model selection and that linear combinations of the estimates corresponding to the non-vanishing components are asymptotically normally distributed with a smaller variance than those obtained by the "classical" adaptive Lasso. The results are illustrated in a data example and by means of a small simulation study.
In this paper we investigate penalized least squares methods in linear regression models with heteroscedastic error structure. It is demonstrated that the basic properties with respect to model selection and parameter estimation of bridge estimators, Lasso and adaptive Lasso do not change if the assumption of homoscedasticity is violated. However, these estimators do not have oracle properties in the sense of Fan and Li (2001). In order to address this problem we introduce weighted penalized least squares methods and demonstrate their advantages by asymptotic theory and by means of a simulation study.
We study the moment space corresponding to matrix measures on the unit circle. Moment points are characterized by non-negative definiteness of block Toeplitz matrices. This characterization is used to derive an explicit representation of orthogonal polynomials with respect to matrix measures on the unit circle and to present a geometric definition of canonical moments. It is demonstrated that these geometrically defined quantities coincide with the Verblunsky coefficients, which appear in the Szegö recursions for the matrix orthogonal polynomials. Finally, we provide an alternative proof of the Geronimus relations which is based on a simple relation between canonical moments of matrix measures on the interval [-1,1] and the Verblunsky coefficients corresponding to matrix measures on the unit circle.
We consider quantile regression processes from censored data under dependent data structures and derive a uniform Bahadur representation for those processes. We also consider cases where the dimension of the parameter in the quantile regression model is large. It is demonstrated that traditional penalization methods such as the adaptive lasso yield sub-optimal rates if the coefficients of the quantile regression cross zero. New penalization techniques are introduced which are able to deal with specific problems of censored data and yield estimates with an optimal rate. In contrast to most of the literature, the asymptotic analysis does not require the assumption of independent observations, but is based on rather weak assumptions, which are satisfied for many kinds of dependent data.
In this paper we discuss the asymptotical properties of quantile processes under random censoring. In contrast to most work in this area we prove weak convergence of an appropriately standardized quantile process under the assumption that the quantile regression model is only linear in the region, where the process is investigated. Additionally, we also discuss properties of the quantile process in sparse regression models including quantile processes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.