Hydrocracking of saturated hydrocarbons can proceed by means of four distinctly different mechanisms. On bifunctional catalysts comprising hydrogenation/dehydrogenation and Brønsted acid sites alkenes and carbocations occur as intermediates. The current mechanistic views of bifunctional hydrocracking of long‐chain n‐alkanes are discussed in detail with emphasis on the now widely accepted concept of ideal hydrocracking. Other mechanisms are hydrogenolysis and Haag–Dessau hydrocracking which proceed, respectively, on monofunctional metallic and acidic catalysts. Even without a catalyst, thermal hydrocracking occurs in chain reactions via radicals. The chemistry of hydrocracking naphthenes on bifunctional catalysts resembles that of alkanes. A peculiarity, however, is the pronounced reluctance of cyclic carbenium ions to undergo endocyclic β‐scissions. The effect manifests itself in the so‐called paring reaction, which, in turn, forms the basis for measuring the Spaciousness Index for characterizing the effective pore width of zeolitic catalysts. Hydrocracking on bifunctional catalysts is among the very important processes in modern petroleum refining. It is primarily used for converting heavy oils into diesel and jet fuel. Besides, hydrocracking is appreciated for its pronounced versatility: numerous process variants exist which help to meet specific requirements in refineries or petrochemical plants. Two recent developments are briefly discussed in this review, viz. the conversion of surplus aromatics, e.g., in pyrolysis gasoline, into a synthetic feedstock for steam crackers, and quality enhancement of diesel fuel by selective ring opening of polynuclear aromatics.
The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion (including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and non-equilibrium conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.