GIGANTEA (GI) is a clock-regulated, nuclear-localised plant protein. It invaluably contributes as a core element with pleiotropic functions in the cardinal plant physiological pathways including flowering time regulation, circadian clock control, abiotic stress tolerance, and miRNA processing. This review aims to highlight the importance of GI and elucidate on the participatory mechanism it follows to regulate plant responses. An attempt is made to concisely present the pivotal functions of GI in Arabidopsis drawing an analogy with the functions of the paralogs in other species underlining its conserved nature. This paper also strives to draw attention to the possibility of considering GI as a candidate gene for modulation to enhance tolerance against abiotic stresses.
Ralstonia solanacearum (Rs), the causal agent of bacterial wilt disease in an unusually wide range of host plants, including potato (Solanum tuberosum), is one of the most destructive phytopathogens that seriously reduces crop yields worldwide. Identification of defence mechanisms underlying bacterial wilt resistance is a prerequisite for biotechnological approaches to resistance breeding. Resistance to Rs has been reported only in a few potato landraces and cultivars. Our in vitro inoculation bioassays confirmed that the cultivars ‘Calalo Gaspar’ (CG) and ‘Cruza 148’ (CR) are resistant to Rs infection. Comparative transcriptome analyses of CG and CR roots, as well as of the roots of an Rs-susceptible cultivar, ‘Désirée’ (DES), were carried out two days after Rs infection, in parallel with their respective noninfected controls. In CR and DES, the upregulation of chitin interactions and cell wall-related genes was detected. The phenylpropanoid biosynthesis and glutathione metabolism pathways were induced only in CR, as confirmed by high levels of lignification over the whole stele in CR roots six days after Rs infection. At the same time, Rs infection greatly increased the concentrations of chlorogenic acid and quercetin derivatives in CG roots as it was detected using ultra-performance liquid chromatography − tandem mass spectrometry. Characteristic increases in the expression of MAP kinase signalling pathway genes and in the concentrations of jasmonic, salicylic, abscisic and indoleacetic acid were measured in DES roots. These results indicate different Rs defence mechanisms in the two resistant potato cultivars and a different response to Rs infection in the susceptible cultivar.
GIGANTEA (GI) genes are ubiquitous in the plant kingdom and are involved in diverse processes from flowering during stress responses to tuberization; the latter occurs in potato (Solanum tuberosum L.). GI genes have a diurnal cycle of expression; however, no details on the regulation of GI gene expression in potato have been reported thus far. The aim of our work was the analysis of the GI promoter sequence and studying GI expression in different organs and under abiotic stress conditions in potato. Two GI genes homologous to Arabidopsis GI located on chromosomes 4 and 12 (StGI.04 and StGI.12) were identified in the genome-sequenced potato S. phureja. The GI promoter regions of the commercial potato cultivar ‘Désirée’ were cloned and found to be almost identical to the S. phureja GI promoter sequence. More than ten TF families binding to the GI promoters were predicted. EVENING ELEMENT and ABSCISIC ACID RESPONSE ELEMENT LIKE elements related to circadian regulation and a binding site for POTATO HOMEOBOX 20 presumably involved in tuber initiation were detected in both GI promoters. However, the locations of these elements and several other cis-acting regulatory elements as well as the organ-specific expression and responses of the genes to abiotic stresses and abscisic acid were different. Thus, we presume that the function of StGI.04 and StGI.12 are at least partially different. This study lays foundation for further investigation of the roles of GI genes in potato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.