Asphaltenes are a poorly defined class of self-assembling and surface active molecules present in crude oils. The nature and structure of the nanoaggregates they form remain subjects of debate and speculation. In this exploratory work, the surface properties of asphaltene nanoaggregates are probed using electrically neutral 5 nm diameter gold-core nanoparticles with alkyl, aromatic, and alkanol functionalities on their surfaces. These custom synthesized nanoparticles are characterized, and their enthalpies of solution at near infinite dilution and the interfacial tensions of solutions containing these nanoparticles are compared with the corresponding values for Athabasca pentane asphaltenes. The enthalpies of solution of these asphaltenes in toluene, heptane, pyridine, ethanol, and water are consistent with the behavior of gold-alkyl nanoparticles. The interfacial tension values of these asphaltenes at toluene–water and (toluene + heptane)–water interfaces are consistent with the behavior of gold-biphenyl nanoparticles as are the tendencies for these asphaltenes and gold-biphenyl nanoparticles to “precipitate” in toluene + heptane mixtures. Gold-alkyl nanoparticles are minimally surface active at toluene–water and (toluene + heptane)–water interfaces and remain dispersed in all toluene + heptane mixtures. The behavior of these asphaltenes in solution and at interfaces is inconsistent with the behavior of gold-n-alkanol nanoparticles. The outcomes of this formative work indicate potential roles for aromatic submolecular motifs on aggregate surfaces as a basis for interpreting asphaltene nanoparticle flocculation and interfacial properties, while alkyl submolecular motifs on aggregate surfaces appear to provide a basis for interpreting other aspects of asphaltene solution behavior. A number of lines of inquiry for future work are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.