This work focused on reflecting the substituting ratio of fine aggregate in an aggregate simulation. The existing simulation studies showed superior performance on generating the particles; however, the studies did not and could not reflect the substituting ratio of fine aggregate. Therefore, a statistical approach with the Monte Carlo simulation method was tried to improve the lacking part. According to the fitting of the distributions, the Cauchy distribution was best for the natural sand and the log-normal distribution was best for the substituting materials. The chosen two distributions were mixed and applied, using the Monte Carlo method with the mixed model, rather than the existing particle generation formula of the simulation. The substitution ratio was considered to be 0, 30, 50, 70, 100%. The fraction of small particles was gradually increased by the substituting ratio. As a result, the simulated particle distribution reflected well the statistical model. In addition, the simulation was almost the same as that of real particle distribution, according to the CT scanning.
High temperature conditions, such as fire, are detrimental factors to the mechanical and chemical properties of concrete. In this paper, the authors developed a new type of coarse aggregate, named PCM/SiC composite aggregate (enhanced aggregate: EA), to improve fire-resistance performance. To investigate the validity of EA for construction materials, a compressive strength test, static modulus of elasticity, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were conducted. In addition, this EA has been developed to improve residual performance after exposure to high temperature, with residual compressive strength and internal temperature measurement tested at 1000 °C. Furthermore, chemical properties after heating were investigated by XRD and SEM-EDAX. The results show that the percentage of residual compressive strength of heated concrete with EA is higher than plain concrete. The concrete with EA exhibited primary cement composites such as C-H and C-S-H after exposure to high temperature through XRD and SEM-EDAX. On the other hand, major hydration products could not be observed in plain concrete. PCM and SiC offer an opportunity to delay the increase in concrete temperature. From evaluation of the results, we can see that EA enhanced the residual performance of concrete after exposure to high temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.