Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic= pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes. Antioxid. Redox Signal. 14, 137-167.
An auxiliary factor of mammalian multi-aminoacyltRNA synthetases, p43, is thought to be a precursor of endothelial monocyte-activating polypeptide II (EMAP II) that triggers proinflammation in leukocytes and macrophages. In the present work, however, we have shown that p43 itself is specifically secreted from intact mammalian cells, while EMAP II is released only when the cells are disrupted. Secretion of p43 was also observed when its expression was increased. These results suggest that p43 itself should be a real cytokine secreted by an active mechanism. To determine the cytokine activity and active domain of p43, we investigated tumor necrosis factor (TNF) and interleukin-8 (IL-8) production from human monocytic THP-1 cells treated with various p43 deletion mutants. The full length of p43 showed higher cytokine activity than EMAP II, further supporting p43 as the active cytokine. p43 was also shown to activate MAPKs and NFB, and to induce cytokines and chemokines such as TNF, IL-8, MCP-1, MIP-1␣, MIP-1, MIP-2␣, IL-1, and RANTES. Interestingly, the high level of p43 was observed in the foam cells of atherosclerotic lesions. Therefore, p43 could be a novel mediator of atherosclerosis development as well as other inflammation-related diseases.
Background-We intended to identify proteins that are differentially expressed in human atherosclerotic plaques. Methods and Results-Comparative 2-dimensional electrophoretic analysis on carotid atherosclerotic endarterectomy specimens (nϭ10) revealed that heat shock protein 27 (Hsp27) expression was significantly increased in the nearby normal-appearing area compared with the plaque core area from the same vessel specimen, which was further confirmed by Western blot analysis. The Hsp27 expression in the adjacent normal-appearing vessel areas was much higher than that in nonatherosclerotic reference arteries. The phosphorylation of Hsp27 showed a gradation in the degree of phosphorylation: greatest in the reference arteries, intermediate in the adjacent normal-appearing area, and lowest in plaque core area. Immunohistochemical analysis showed that the phosphorylation of Hsp27 of smooth muscle cells in the carotid endarterectomy specimens was decreased compared with that in the reference artery specimen. The mean plasma level of Hsp27 was significantly higher in patients with acute coronary syndrome (ACS) (nϭ27; 106.1Ϯ74.1 ng/mL) than in the normal reference subjects (nϭ29; 45.8Ϯ29.5 ng/mL; PϽ0.005). The plasma levels of Hsp27 were significantly correlated with those of heat shock protein 70 (Hsp70) (rϭ0.422, PϽ0.0005), with adjustment for ACS/reference status. Conclusions-In the atherosclerotic lesion, Hsp27 expression is increased in the normal-appearing vessel adjacent to atherosclerotic plaque, whereas levels in the plaque itself are significantly decreased. Both plaque and adjacent artery show decreased Hsp27 phosphorylation compared with reference vessel. In ACS, plasma Hsp27 and Hsp70 are increased, and levels of Hsp27 correlate with Hsp70, C-reactive protein, and CD40L levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.