Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders are successfully synthesized as an efficient anode material for lithium-ion batteries
Herein, for the first time, yolk–shell-structured microspheres consisting of N-doped-carbon-coated binary transition-metal oxide hollow nanospheres are designed as anode materials for lithium-ion batteries.
Multicomponent materials with various double cations have been studied as anode materials of lithium‐ion batteries (LIBs). Heterostructures formed by coupling different‐bandgap nanocrystals enhance the surface reaction kinetics and facilitate charge transport because of the internal electric field at the heterointerface. Accordingly, metal selenites can be considered efficient anode materials of LIBs because they transform into metal selenide and oxide nanocrystals in the first cycle. However, few studies have reported synthesis of uniquely structured metal selenite microspheres. Herein, synthesis of high‐porosity CoSeO3 microspheres is reported. Through one‐pot oxidation at 400 °C, CoSex–C microspheres formed by spray pyrolysis transform into CoSeO3 microspheres showing unordinary cycling and rate performances. The conversion mechanism of CoSeO3 microspheres for lithium‐ion storage is systematically studied by cyclic voltammetry, in situ X‐ray diffraction and electrochemical impedance spectroscopy, and transmission electron microscopy. The reversible reaction mechanism of the CoSeO3 phase from the second cycle onward is evaluated as CoO + xSeO2 + (1 − x)Se + 4(x + 1)Li++ 4( x + 1)e− ↔ Co + (2x + 1)Li2O + Li2Se. The CoSeO3 microspheres show a high reversible capacity of 709 mA h g−1 for the 1400th cycle at a current density of 3 A g−1 and a high reversible capacity of 526 mA h g−1 even at an extremely high current density of 30 A g−1.
We present a thorough review on the advances of the aerosol spray processes for synthesis of nanostructured materials for next-generation rechargeable batteries, including the insights into formation mechanism, current status, and future outlook.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.