Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Epithelial-to-mesenchymal transition (EMT) is a critical cellular phenomenon regulating tumor metastases. In the present study, we investigated whether ginkgolic acid can affect EMT in lung cancer cells and the related underlying mechanism(s) of its actions. We found that ginkgolic acid C15:1 (GA C15:1) inhibited cell proliferation, invasion, and migration in both A549 and H1299 lung cancer cells. GA C15:1 also suppressed the expression of EMT related genes (Fibronectin, Vimentin, N-cadherin, MMP-9, MMP-2, Twist and Snail) and suppressed TGF-β-induced EMT as assessed by reduced expression of mesenchymal markers (Fibronectin, Vimentin, N-cadherin), MMP-9, MMP-2, Twist and Snail. However, GA C15:1 did not affect the expression of various epithelial marker proteins (Occludin and E-cadherin) in both A549 and H1299 cells. TGF-β-induced morphologic changes from epithelial to mesenchymal cells and induction of invasion and migration were reversed by GA C15:1. Finally, GA C15:1 not only abrogated basal PI3K/Akt/mTOR signaling cascade, but also reduced TGF-β-induced phosphorylation of PI3K/Akt/mTOR pathway in lung cancer cells. Overall, these findings suggest that GA C15:1 suppresses lung cancer invasion and migration through the inhibition of PI3K/Akt/mTOR signaling pathway and provide a source of potential therapeutic compounds to control the metastatic dissemination of tumor cells. J. Cell. Physiol. 232: 346-354, 2017. © 2016 Wiley Periodicals, Inc.
Background-Cardiac hypertrophy is characterized by transcriptional reprogramming of fetal gene expression, and histone deacetylases (HDACs) are tightly linked to the regulation of those genes. We previously demonstrated that activation of HDAC2, 1 of the class I HDACs, mediates hypertrophy. Here, we show that casein kinase-2␣1 (CK2␣1)-dependent phosphorylation of HDAC2 S394 is required for the development of cardiac hypertrophy. Methods and Results-Hypertrophic stimuli phosphorylated HDAC2 S394, which was necessary for its enzymatic activation, and therefore the development of hypertrophic phenotypes in rat neonatal cardiomyocytes or in isoproterenoladministered mice hearts. Transgenic mice overexpressing HDAC2 wild type exhibited cardiac hypertrophy, whereas those expressing phosphorylation-resistant HDAC2 S394A did not. Compared with that in age-matched normal human hearts, phosphorylation of HDAC2 S394 was dramatically increased in patients with hypertrophic cardiomyopathy. Hypertrophy-induced phosphorylation of HDAC2 S394 and its enzymatic activity were completely blocked either by CK2 blockers or by CK2␣1 short interfering RNA. Hypertrophic stimuli led CK2␣1 to be activated, and its chemical inhibitors blocked hypertrophy in both phenylephrine-treated cardiomyocytes and isoproterenol-administered mice. CK2␣1-transgenic mice developed hypertrophy, which was attenuated by administration of trichostatin A, an HDAC inhibitor. Overexpression of CK2␣1 caused hypertrophy in cardiomyocytes, whereas chemical inhibitors of both CK2 and HDAC as well as HDAC2 S394A blunted it. Hypertrophy in CK2␣1-transgenic mice was exaggerated by crossing these mice with wild-type-HDAC2-overexpressing mice. By contrast, however, it was blocked when CK2␣1-transgenic mice were crossed with HDAC2 S394A-transgenic mice. Conclusions-We have demonstrated a novel mechanism in the development of cardiac hypertrophy by which CK2 activates HDAC2 via phosphorylating HDAC2 S394. (Circulation. 2011;123:2392-2403.)Key Words: hypertrophy Ⅲ casein kinase 2 Ⅲ histone deacetylase 2 S394 Ⅲ phosphorylation Ⅲ transgenic mice C ardiac hypertrophy, an increase in the size of cardiomyocytes, is often caused by diverse pathological conditions such as myocardial infarction, hypertension, aortic stenosis, and valvular dysfunction. Although cardiac hypertrophy itself is an initial adaptive process, uncorrected continuous stimuli often lead the heart to heart failure. Because heart failure is a main cause of human mortality, many researchers are eager to develop interventions to reverse cardiac hypertrophy or to prevent the transition to congestive heart failure. Editorial see p 2341 Clinical Perspective on p 2403Posttranslational modifications of histones are closely involved in diverse biological processes through the regulation of transcription of downstream target genes. 1,2 Among these modifications, the acetylation status of the chromatin mediates the epigenetic regulation of gene expression. Two opposing groups of enzymes, histone acetyltransferase and hi...
Persistent STAT3 activation is seen in many tumor cells and promotes malignant transformation. Here, we investigated whether capsazepine (Capz), a synthetic analogue of capsaicin, exerts anticancer effects by inhibiting STAT3 activation in prostate cancer cells. Capz inhibited both constitutive and induced STAT3 activation in human prostate carcinoma cells. Capz also inhibited activation of the upstream kinases JAK1/2 and c-Src. The phosphatase inhibitor pervanadate reversed Capz-induced STAT3 inhibition, indicating that the effect of Capz depends on a protein tyrosine phosphatase. Capz treatment increased PTPε protein and mRNA levels. Moreover, siRNA-mediated knockdown of PTPε reversed the Capz-induced induction of PTPε and inhibition of STAT3 activation, indicating that PTPε is crucial for Capz-dependent STAT3 dephosphorylation. Capz also decreased levels of the protein products of various oncogenes, which in turn inhibited proliferation and invasion and induced apoptosis. Finally, intraperitoneal Capz administration decreased tumor growth in a xenograft mouse prostate cancer model and reduced p-STAT3 and Ki-67 expression. These data suggest that Capz is a novel pharmacological inhibitor of STAT3 activation with several anticancer effects in prostate cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.