Optical activity is the result of chiral molecules interacting differently with left versus right circularly polarized light. Because of this intrinsic link to molecular structure, the determination of optical activity through circular dichroism (CD) spectroscopy has long served as a routine method for obtaining structural information about chemical and biological systems in condensed phases. A recent development is time-resolved CD spectroscopy, which can in principle map the structural changes associated with biomolecular function and thus lead to mechanistic insights into fundamental biological processes. But implementing time-resolved CD measurements is experimentally challenging because CD is a notoriously weak effect (a factor of 10(-4)-10(-6) smaller than absorption). In fact, this problem has so far prevented time-resolved vibrational CD experiments. Here we show that vibrational CD spectroscopy with femtosecond time resolution can be realized when using heterodyned spectral interferometry to detect the phase and amplitude of the infrared optical activity free-induction-decay field in time (much like in a pulsed NMR experiment). We show that we can detect extremely weak signals in the presence of large achiral background contributions, by simultaneously measuring with a femtosecond laser pulse the vibrational CD and optical rotatory dispersion spectra of dissolved chiral limonene molecules. We have so far only targeted molecules in equilibrium, but it would be straightforward to extend the method for the observation of ultrafast structural changes such as those occurring during protein folding or asymmetric chemical reactions. That is, we should now be in a position to produce 'molecular motion pictures' of fundamental molecular processes from a chiral perspective.
We have carried out a femtosecond transient absorption spectroscopic study on nickel(II) porphyrins in various solvents in order to obtain detailed information on vibrational relaxation processes occurring in the initial stage after photoexcitation to the highly excited states. We found the decay process of time constant of approximately 1 ps corresponding to the intramolecular vibrational relaxation process for Ni(II)TPP and Ni(II)OEP in toluene. In addition to this process, the intermolecular vibrational relaxation process with 10−20 ps lifetime was also observed for Ni(II)OEP in toluene, although its contribution to the overall decay process is relatively weak probably due to the weak solute/solvent interaction. In coordinating solvents such as pyridine and piperidine, we observed the intramolecular vibrational relaxation processes before complete population of the bottleneck excited metal 1|0,d z 2 〉 or 3|0,3(d,d)〉 state. In this case, it is likely that the intermolecular vibrational relaxation process associated with photodissociation/photoassociation processes depending on the selective excitation of four- and six-coordinate species is accompanied by the intramolecular vibrational relaxation due to the strong solute/solvent interaction. These processes are also believed to be responsible for the excess energy dissipation of highly excited nickel(II) porphyrins into the surrounding solvent molecules.
Polyethylene glycol (PEG) is a unique polymer material with enormous applicability in many industrial and scientific fields. Here, its use as macromolecular crowder to mimic the cellular environment in vitro is the focus of the present study. We show that femtosecond mid-IR pump-probe spectroscopy using three different IR probes, HDO, HN, and azido-derivatized crowder, provides complete and stereoscopic information on water structure and dynamics in the cytoplasm-like macromolecular crowding environment. Our experimental results suggest two distinct subpopulations of water molecules: those that interact with other water molecules and those that are part of a hydration shell of crowder on its surface. Interestingly, water dynamics even in highly crowded environment remains bulk-like in spite of significant perturbation to the tetrahedral H-bonding network of water molecules. That is possible because of the formation of water aggregates (pools) even in water-deficient PEGDME-water solutions. In such a crowded environment, the conformationally accessible phase space of the macromolecular crowder is reduced, similar to biopolymers in highly crowded cytoplasm. Nonetheless, the hydration water on the surface of crowders slows down considerably with increased crowding. Most importantly, we do not observe any coalescing of surface hydration water (of the crowder) with bulk-like water to generate collective hydration dynamics at any crowder concentration, contrary to recent reports. We anticipate that the present triple-IR-probe approach is of exceptional use in studying how conformational states of crowders correlate with structural and dynamical changes of water, which is critical in understanding their key roles in biological and industrial applications.
Optical activities such as circular dichroism (CD) and optical rotatory dispersion (ORD) are manifested by almost all natural products. However, the CD is an extremely weak effect so that time-resolved CD spectroscopy has been found to be experimentally difficult and even impossible for vibrational CD with current technology. Here, we show that the weak-signal and nonzero background problems can be overcome by heterodyned spectral interferometric detection of the phase and amplitude of optical activity free-induction-decay (OA FID) field. A detailed theoretical description and a cross-polarization scheme for selectively measuring the OA FID are presented and discussed. It is shown that the parallel and perpendicular electric fields when the solution sample contains chiral molecules are coupled to each other. Therefore, simultaneous spectral interferometric measurements of the parallel and perpendicular FID fields can provide the complex susceptibility, which is associated with the circular dichroism and optical rotatory dispersion as its imaginary and real parts, respectively. On the basis of the theoretical results, to examine its experimental possibility, we present numerical simulations for a model system. We anticipate the method discussed here to be a valuable tool for detecting electronic or vibrational optical activity in femtosecond time scale.
By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.