Posttraumatic pseudoaneurysms of the sphenopalatine artery are rare. Only a few cases have been reported. We report two cases of hemorrhage due to pseudoaneurysm of the sphenopalatine artery. The hemorrhage was uncontrollable. It required embolization. Two patients visited our hospital for treatment of zygomaticomaxillary complex fracture. At the emergency room, patients presented with massive nasal bleeding which ceased shortly. After reduction of the fracture, patients presented persistent nasopharyngeal bleeding. Under suspicion of intracranial vessel injury, we performed angiography. Angiograms revealed pseudoaneurysms of the sphenopalatine artery. Endovascular embolization was performed, leading to successful hemostasis in both patients. Due to close proximity to pterygoid plates, zygomaticomaxillary complex fracture involving pterygoid plates may cause injury of the sphenopalatine artery. The only presentation of sphenopalatine artery injury is nasopharyngeal bleeding which is common. Based on our clinical experience, although pseudoaneurysm of maxillary artery branch after maxillofacial trauma has a low incidence, suspicion of injury involving deeply located arteries and early imaging via angiogram are recommended to manage recurrent bleeding after facial trauma or surgery.
Background The alar rim is a complex structure that ensures the competence of the external valves and the patency of inlets to the nasal airways. Retraction of the alar rim is caused by congenital malpositioning, hypoplasia, or surgical weakening of the lateral crura, with the potential for both functional and aesthetic ramifications. Most previously introduced procedures involved a relatively long operation time and relatively high risks of surgical complications. The purpose of this study is to introduce a novel surgical technique for alar rim connection and to present its results. Methods After marking the extent of the correction, the recipient alar bed was created by making an incision through the vestibular skin 2-mm cephalad to the rim. Then, the composite graft was harvested from the cymba concha by removing the cartilage with its adherent anterior skin. According to the degree of retraction, the harvested composite graft was divided into 2 pieces considering the symmetry of both alar rims. The composite grafts were inserted into the defects and primary closure was done at the donor site. Results Our surgical technique was used to correct 12 retracted alar rims in 6 patients. Caudal advancement of the alar rims was observed and the contour of the ala was corrected in all 6 patients. The mean length of follow-up was 1-year, and there were no postoperative complications, such as graft loss or disruption. Conclusions The alar rim composite graft is a safe and simple technique for correction of short nostril and caudal transposition of the retracted alar rim.
Surgical wound dehiscence is a postoperative complication involving breakdown of surgical incision site. Despite the increased knowledge of wound healing process before and after surgery and the development of preoperative care and suture materials, wound dehiscence may increase the length of hospital stay, increase patient inconvenience and rates of re-operation. In addition, wound dehiscence after abdominal surgery is associated with mortality rates of 10−44% [1,2].Several studies investigated risk factors causing wound dehiscence. Patients older than 65 years are more likely to develop wound dehiscence because of deterioration in tissue repair mechanism compared with younger patients [3]. Other well-known risk factors include hypoproteinemia, local wound infection, anemia, hypertension, and emergency surgery [1]. Risk factors that increase intra-abdominal pressure such as abdominal distension, excessive coughing, vomiting, and constipation increase the possibility of wound dehiscence after surgery [4]. In addition, surgical experience, operative time exceeding 2.5 hours, type of incision, suture material, drain, medical history such as obesity with body mass index (BMI) greater than 30 [5], stroke, chronic obstructive pulmonary disease (COPD), pneumonia, and malignancy also affect wound dehiscence [6]. In particular, studies show increased wound dehiscence rates in patients with more than 5 risk factors [1].Despite many studies investigating the risk factors causing wound dehiscence and efforts to control them, patients continue to suffer from wound dehiscence. The pur- Original ArticleAbstract Surgical wound dehiscence is a postoperative complication involving breakdown of surgical incision site. Despite the increased knowledge of wound healing mechanism before and after surgery, wound dehiscence may increase the length of hospital stay, increase patient inconvenience and rates of re-operation. The purpose of this study was to analyze the causes of wound dehiscence in patients undergoing reoperation at 4 hospitals of Soonchunhyang Medical Center. The number of patients in each hospital and those operated previously were compared. In addition, other characteristics of patients were compared in patients who underwent reoperation. In 22 out of 1,026 patients consulted at the Seoul hospital, 32 cases out of 1,295 at Bucheon hospital, 14 cases out of 1,687 at Cheonan hospital and 15 cases out of 374 at Gumi hospital, wound revision was performed for wound dehiscence. Patients at the Department of Obstetrics and Gynecology were the most common and included 33 patients (39.8%). The most common intervention before wound revision was Cesarean section in 14 patients (19.3%). In this study, we retrospectively reviewed patients who underwent wound revision due to wound dehiscence and analyzed the underlying causes of the postoperative complication.
Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling . Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.