Silica aerogels are excellent thermal and acoustic insulators because of interconnected open nanopores with more than 90% porosity and higher surface area. Silica aerogel is derived by sol-gel process and dried under super-critical, subcritical or ambient pressure conditions. Thin silica aerogel sheets could be effective thermal insulators but high fragility hinders the wider applications. We have successfully developed a synthesis method for thin, flexible, and non-fragile aerogel sheets with excellent hydrophobicity, lower thermal conductivity, and non-combustible properties via ambient drying method. The silica aerogel sheets prepared compose of silica aerogel powder, fiber glass chopped strands, and solvent-based binder. Aerogel thin insulation sheets of thickness 164 μm were prepared by pressing through rollers using aerogel paste composed of aerogel powder, fiber glass strands, and binders. The thermal conductivity values obtained were between 0.02~0.63 W/mK at temperature 25~400°C, contact angle θ = 121' , weight loss 3.91% when heated up to 800°C in air, dielectric voltage breakdown 3.67 kV, dielectric strength 6.37 kV/mm and tensile strength of 2.65 N/mm². The overall thermal, electrical, and mechanical evaluation of aerogel thin insulation sheet showed they have higher potential to replace existing thick and bulky aerogel composites as thermal and electrical insulators in aviation, automobiles, electronics, and high power batteries.
This work presents the preparation of alumina aerogel via sol-gel route utilizing ambient-pressure drying. A novel and efficient solvent-exchange process has been utilized as an alternative to conventional solvent-exchange processes by directly boiling the hydro-gel in solvent. High emphasis has been given in the selection of solvent based on polarity, boiling point, and specific gravity compared with water to facilitate efficient solvent-exchange and reuse of the solvent. The ambient-pressure-dried alumina aerogel was thermally treated at temperature from 300°C-1200°C to study the change in density, porosity, specific surface area, and microstructure along with crystalline properties. The ambient-pressure-dried alumina aerogel showed lower tapped density 0.108 g/cm 3 , specific surface area 519 m 2 /g, and total weight loss of 36.94% at 900°C. The degree of crystalline structure from amorphous was observed to increase with increase in thermal treatment temperature above 300°C, dominant above 700°C, whereas the transformation of bayerite γ-Al(OH) 3 to boehmite γ-AlO 2 H was observed at 150°C-300°C and to γ-Al 2 O 3 phase was observed at temperature of 300°C-1200°C.
K E Y W O R D Saerogel/aerosol, drying, porous materials, sol-gel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.