In this paper, we study an asymptotic behavior of the finite-time ruin probability of the compound Poisson model in the case that the initial surplus is large. To compare an exact ruin probability with an approximate one, we place the focus on the exact calculation for the ruin probability when the claim size distribution is regularly varying tailed (i.e. exponential claims and inverse Gaussian claims). We estimate an adjustment coefficient in these examples and show the relationship between the adjustment coefficient and the safety premium. The illustration study shows that as the safety premium increases so does the adjustment coefficient. Larger safety premium means lower "long-term risk", which only stands to reason since higher safety premium means a faster rate of safety premium income to offset claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.