Micron-sized macroporous TiO2 spheres (MAC-TiO2) were synthesized using a colloidal templating process inside emulsions, which were then coated on a nanocrystalline TiO2 light absorption film to prepare a bilayered photoanode for liquid-based dye-sensitized solar cells (DSSC) and hybrid heterojunction solid-state solar cells. MAC-TiO2 layers can enhance light scattering as well as absorption, because their pore size and periodicity are comparable to light wavelength for unique multiple scattering and a porous surface can load dye more. Moreover, due to the bicontinuous nature of macropores and TiO2 walls, electrolyte could be transported much faster in between the TiO2 spheres rather than within the small TiO2 nonporous architectures. Electron transport was also facilitated along the interconnected TiO2 walls. In DSSCs with these MAC-TiO2 scattering layers, efficiency was higher than conventional DSSCs incorporating a commercial scattering layer. The unique geometry of MAC-TiO2 results in strong improvements in light scattering and infiltration of hole-transporting materials, thereby the MAC-TiO2-based solid-state device showed comparatively higher efficiency than the device with conventional nanocrystalline TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.