We propose very efficient algorithms for the bootstrap percolation and the diffusion percolation models by extending the Newman-Ziff algorithm of the classical percolation [M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85 (2000) 4104]. Using these algorithms and the finite-size-scaling, we calculated with high precision the percolation threshold and critical exponents in the eleven two-dimensional Archimedean lattices. We present the condition for the continuous percolation transition in the bootstrap percolation and the diffusion percolation, and show that they have the same critical exponents as the classical percolation within error bars in two dimensions. We conclude that the bootstrap percolation and the diffusion percolation almost certainly belong to the same universality class as the classical percolation.
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
We study the bootstrap and diffusion percolation models in the simple-cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices using the Newman–Ziff algorithm. The percolation threshold and critical exponents were calculated through finite-size scaling with high precision in the three lattices. In addition to the continuous and first-order percolation transitions, we found a double transition, which is a continuous transition followed by a discontinuity of the order parameter. We show that the continuous transitions of the bootstrap and diffusion percolation models have the same critical exponents as the classical percolation within error bars and they all belong to the same universality class.
The contagion threshold for diffusion of innovations is defined and calculated in finite graphs (two-dimensional regular lattices, regular random networks (RRNs), and two kinds of scale-free networks (SFNs)) with and without the bilingual option. Without the bilingual option, degree inhomogeneity and clustering enhance the contagion threshold in non-regular networks except for those with an unrealistically small average degree. It is explained by the friendship paradox and detour effect. We found the general boundary of the cost that makes the bilingual option effective. With a low-cost bilingual option, among regular lattices, SFNs, and RRNs, the contagion threshold is largest in regular lattices and smallest in RRNs. The contagion threshold of regular random networks is almost the same as that of the regular trees, which is the minimum among regular networks. We show that the contagion threshold increases by clustering with a low-cost bilingual option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.