ObjectivesCell-based therapy has been reported to repair or restore damaged salivary gland (SG) tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs) can ameliorate radiation-induced SG damage.MethodshAdMSCs (1×106) were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs) and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs) was observed in vitro using a co-culture system.ResultsThe systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%–18%) were observed to transdifferentiate into SGCs.ConclusionThe findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.
Background and PurposeThis study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model.Materials and MethodsHuman adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects.ResultsThe conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia-cultured hAdMSC secretome.ConclusionThese results show that the hAdMSC secretome from hypoxic-conditioned medium may provide radioprotection and tissue remodeling via release of paracrine mediators.
BackgroundThe Montreal Cognitive Assessment (MoCA) is known to have discriminative power for patients with Mild Cognitive Impairment (MCI). Recently Cognitive Reserve (CR) has been introduced as a factor that compensates cognitive decline. We aimed to assess whether the MoCA reflects CR. Furthermore, we assessed whether there were any differences in the efficacy between the MoCA and the Mini-Mental State Examination (MMSE) in reflecting CR.MethodsMoCA, MMSE, and the Cognitive Reserve Index questionnaire (CRIq) were administered to 221 healthy participants. Normative data and associated factors of the MoCA were identified. Correlation and regression analyses of the MoCA, MMSE and CRIq scores were performed, and the MoCA score was compared with the MMSE score to evaluate the degree to which the MoCA reflected CR.ResultsThe MoCA reflected total CRIq score (CRI; B = 0.076, P < 0.001), CRI-Education (B = 0.066, P < 0.001), and CRI-Working activity (B = 0.025, P = 0.042), while MMSE reflected total CRI (B = 0.044, P < 0.001) and CRI-Education (B = 0.049, P < 0.001) only. The MoCA differed from the MMSE in the reflection of total CRI (Z = 2.30).ConclusionIn this study, we show that the MoCA score reflects CR more sensitively than the MMSE score. Therefore, we suggest that MoCA can be used to assess CR and early cognitive decline.Electronic supplementary materialThe online version of this article (10.1186/s12877-018-0951-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.