We investigate the uplink non-orthogonal multiple access (NOMA)-based Internet-of-Things (IoT) networks, where each IoT device (station: STA) equipped with a single antenna exploits the constellation-rotated space-time line code (CR-STLC) to send signals to an access point (AP) equipped with two receive antennas. The AP decodes the signals transmitted from the STAs with the optimal joint maximum-likelihood (JML) detector. As a main result, we mathematically analyze both the bit-error-rate (BER) performance and the spatial diversity order of each STA in the two-user uplink CR-STLC NOMA system. In particular, it is shown that the two-user uplink CR-STLC NOMA system achieves the optimal diversity order regardless of the constellation rotation angle in the high signal-to-noise ratio (SNR) regime. We also consider two different rotation angle optimization techniques (dynamic rotation & fixed rotation) to improve the BER performance in the practical SNR regime, and found that the fixed rotation approach is simple but yields almost the same performance as the dynamic approach. Finally, we show that the uplink CR-STLC NOMA system achieves the spatial diversity order of 1 even when more than two STAs send packets simultaneously. It is worth noting that all STAs obtain an improved spatial diversity gain compared to that without constellation rotation.
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.