Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons (D o X), and the first LO phonon replicas of D o X, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.
Catalyst-and seed layer-free zinc oxide (ZnO) thin films were grown on porous silicon (PS) by a hydrothermal method. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) were carried out to investigate the structural and optical properties of the PS and the ZnO thin films. The ZnO thin films have an extraordinary tendency to grow along the a-axis with a hexagonal wurtzite structure. The growth rate of the ZnO thin films was increased with the increase in the precursor concentration. The crystal quality of the ZnO thin films was improved, and the residual stress was decreased as their thickness increased. Monochromatic indigo and red light emission peaks were observed from the ZnO thin films and the PS, respectively. At an excessively high precursor concentration, a green light emission peak was also observed in the ZnO thin films. The luminescent efficiency of the indigo light emission peak was enhanced with the increase in the precursor concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.