In order to restore the forest ecosystem in the vicinity of an industrial park, Ulsan, southeastern Korea, which has been heavily acidified by air pollution, a preliminary experiment by applying tolerant plants selected through several procedures, and dolomite and sewage sludge as soil ameliorators was carried out. Furthermore, a restoration based on the results was executed and the effects were evaluated based on the creation of safe sites, where new species can establish: regeneration of the forest with species similar in composition to the natural vegetation of native forests that are distant from the industrial park; increase in species diversity. In a preliminary study, the necessity of soil amelioration was diagnosed. Quercus serrata, Alnus firma and Ligustrum japonicum, which represent for tree, subtree, and shrub layers of vegetation in this region, were used as sample plants. Dolomite, sludge, and a mixture of both materials were applied as soil ameliorators. Bare ground (BG), and two grasslands dominated by forbs (GF) and grass (GG), respectively were designated as experimental plots based on a vegetation map of the corresponding area. BG and GF plots, which have lower organic matter contents, increased the growth of sample plants in response to soil amelioration, whereas that with higher contents, GG plot, did not show this response. The result suggests that necessity of soil amelioration depends on site quality. The effects of soil amelioration depended also on the sample plants. This difference is due to an ecological property of A. firma, which can fix atmospheric nitrogen through a symbiotic relationship with actinomycetic fungi. This result implies that this alder could be used as a substitute for soil ameliorators in restoration plan of this area. The height and standing crop of undergrowth, which forms dense grass mat and thereby impedes establishment of new plants, decreased in the restored stands. Such a decrease in the height and biomass of undergrowth could be recognized as providing safe sites, in which the other plants can invade, by removing the dense carpet formed by Miscanthus sinensis. The results of stand ordination showed a progression of the former bare grounds to either M. sinensis (GG) or Pueraria thunbergiana (GF) stands, suggesting a natural recovery through succession toward the stands dominated by both plants. But the change was not progressed beyond the grassland stage. Active restoration practice, which was carried out by applying tolerant plants, however, led to a change toward species composition similar to the natural vegetation before devastation. Furthermore, restored stands reflected the restoration effect by showing higher diversity than the stands in the degraded state. These results showed that the restorative treatment carried out by introducing tolerant plants functioned toward increasing both biological integrity and ecological stability and thereby could meet the restoration goal.
Type-specific stream assessment systems based on biotic indicators are considered a main focus of future stream assessment in many European countries. However, there is a lack of information on type-specific differences of freshwater eco-regions in South Korea. We aimed to classify the stream types characterized by stream size and altitude. Analyzing the relationship between physical environmental variables and benthic macroinvertebrates collected between 2008 and 2015 at 1,020 sites (i.e. 13,366 samples) on a national scale in South Korea, we classified a total of five Korean stream types. All streams were divided into wadeable and non-wadeable streams using stream order and width. Wadeable streams were classified as mountain, highland, or lowland wadeable streams based on altitude. Nonwadeable streams were divided into lowland non-wadeable streams or rivers based on width. Mountain and highland streams significantly correlated with altitude, whereas others were distinctly related to stream order and width. We selected 25 indicator species sensitive to stream size and altitude. These assessments will provide preliminary information for development of a future biotic stream assessment system based on stream typology.
Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry. A total of 83 taxa belonging to 10 families of Odonata were recorded in the dataset. Among them, eight species displayed high abundances and incidences. Self-organizing map (SOM) classified sampling sites into seven clusters (A–G) which could be divided into two distinct groups (A–C and D–G) according to the similarities of their odonate assemblages. Clusters A–C were characterized by members of the suborder Anisoptera, whereas clusters D–G were characterized by the suborder Zygoptera. Non-metric multidimensional scaling (NMDS) identified forest (%), altitude, and cobble (%) in substrata as the most influential environmental factors determining odonate assemblage compositions. Our results emphasize the importance of habitat heterogeneity by demonstrating its effect on odonate assemblages.
Aquatic oligochaetes are very common in streams, and are used as biological assessment indicators as well as in the biological management of organic-enriched systems. In this study, we analyzed the effects of environmental factors influencing the distribution of aquatic oligochaetes Limnodrilus hoffmeisteri in streams. We used 13 environmental factors in three categories (i.e., geography, hydrology, and physicochemistry). Data on the distribution of oligochaetes and environmental factors were obtained from 1159 sampling sites throughout Korea on a nationwide scale. Hierarchical cluster analysis (HCA) and nonmetric multidimensional scaling (NMDS) were performed to analyze the relationships between the occurrence of aquatic oligochaetes and environmental factors. A random forest model was used to evaluate the relative importance of the environmental factors affecting the distribution of oligochaetes. HCA classified sampling sites into four groups according to differences in environmental factors, and NMDS ordination reflected the differences of environmental factors, in particular, water depth, velocity, and altitude, among the four groups defined in the HCA. Furthermore, using a random forest model, turbidity and water velocity were evaluated as highly important factors influencing the distribution of L. hoffmeisteri.
A landcover map watershed of downstream reach in the Gyungan stream was made by using the existing land use map and interpreting satellite images and aerial photos. Based on the map, we analyzed land use patterns of this basin. Broad-leaved forest occupied the largest area among landscape elements established in this watershed. The total area of the zone designated as the waterside district by the central government was 4.7 km 2 , and broad-leaved forest occupied the largest area as 33.9% in this zone. Therefore, the area did not meet the qualifications of riparian zones. Riparian vegetation established in the Gyungan stream watershed was composed of Phragmites communis, Miscanthus sacchariflorus, Salix gracilistyla, Salix koreensis. But terrestrial vegetation elements such as Ambrosia trifida, Ailanthus altissima, Robinia pseudoacacia also appeared in this area. On the other hand, Phragmites japonica, Salix gracilistyla, Salix koreensis, Salix integra, Ulmus davidiana and so on appeared in the riparian zone the reference streams. Differently from the vegetation established on the reference streams, terrestrial vegetation elements appeared frequently in the Gyungan stream watershed. This result would be due to that the Gyungan stream watershed is exposed to excessive human interferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.