The pericellular matrix (PCM) is a narrow tissue region surrounding chondrocytes in articular cartilage, which together with the enclosed cell(s) has been termed the "chondron." While the function of this region is not fully understood, it is hypothesized to have important biological and biomechanical functions. In this article, we review a number of studies that have investigated the structure, composition, mechanical properties, and biomechanical role of the chondrocyte PCM. This region has been shown to be rich in proteoglycans (e.g., aggrecan, hyaluronan, and decorin), collagen (types II, VI, and IX), and fibronectin, but is defined primarily by the presence of type VI collagen as compared to the extracellular matrix (ECM). Direct measures of PCM properties via micropipette aspiration of isolated chondrons have shown that the PCM has distinct mechanical properties as compared to the cell or ECM. A number of theoretical and experimental studies suggest that the PCM plays an important role in regulating the microenvironment of the chondrocyte. Parametric studies of cell-matrix interactions suggest that the presence of the PCM significantly affects the micromechanical environment of the chondrocyte in a zone-dependent manner. These findings provide support for a potential biomechanical function of the chondrocyte PCM, and furthermore, suggest that changes in the PCM and ECM properties that occur with osteoarthritis may significantly alter the stress-strain and fluid environments of the chondrocytes. An improved understanding of the structure and function of the PCM may provide new insights into the mechanisms that regulate chondrocyte physiology in health and disease.
The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.