Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we create a biohybrid system that enables an artificial animal, a tissue-engineered ray, * Correspondence to: K.K.P. 29 Oxford Street, Pierce Hall Cambridge, MA 02130. kkparker@seas.harvard.edu. Phone: 617-495-2850, 617-835-5920. Fax: 617-496-1793 Bioinspired design, as applied to robotics, aims at implementing naturally occurring features such as soft materials, morphologies, gaits, and control mechanisms in artificial settings to improve performance (1-4). For example, recent soft-robotics studies raised awareness on the importance of material properties (3, 4), shifting the focus from rigid elements to soft materials, while other investigations report successful mimicry of gaits or morphological features inspired by insects (5, 6), fish (7,8), snake (9), salamanders (10) and cheetahs (11). While recent advances have the promise of bridging the performance gap with animals, the current soft-robotic actuators based on, for instance, electroactive polymers, shape memory alloys or pressurized fluids, are yet to mature to the point of replicating the high-resolution complex movements of biological muscles (3, 4).In this context, biosensors and bioactuators (12) are intriguing alternatives, since they can intrinsically respond to a number of control inputs (such as electric fields and optical stimulation). Thanks to recent advances in genetic tools (13) and tissue engineering (12), these responses can be altered and tuned across a wide range of time and length scales. Some pioneering studies have exploited these technologies for self-propulsion, developing miniaturized walking machines (14-16), and flagellar (17) or jellyfish inspired (18) swimming devices. These biohybrid systems operate at high energy efficiency and harvest power from energy dense, locally available nutrients, although at present they require specialized environments (physiological solutions) that may limit their applicability. Moreover and most importantly, these biohybrid locomotors lack of the reflexive control (9, 19) necessary to enable adaptive maneuvering and thus of the ability to respond to spatiotemporally varying external stimuli.Here, we design, build and test a tissue-engineered analog of a batoid fish such as stingrays and skates. By combining soft materials and tissue engineering with optogenetics, we created an integrated sensory-motor system that allowed for coordinated undulating fin movement and phototactically controlled locomotion, that is guided via light stimuli. We drew from fish morphology, neuromuscular dynamics and gait control to implement a living, bio-hybrid system that leads to robust and reproducible locomotion and turning maneuvers. Batoid fish are ideal biological models in robotics (8) because their nearly planar bauplan is characterized by a broad dorsoventral disk, with a flattened body and extended pectoral fins, that enhances stability against roll (20). They swim with high energy efficien...
Cell-free DNA (cfDNA) has attracted significant attention due to its high potential to diagnose diseases, such as cancer. Still, its detection by amplification method has limitations because of false-positive signals and difficulty in designing target-specific primers. CRISPR-Cas-based fluorescent biosensors have been developed but also need the amplification step for the detection. In this study, for the first time CRISPR-Cas12a based nucleic acid amplification-free fluorescent biosensor was developed to detect cfDNA by a metal-enhanced fluorescence (MEF) using DNA-functionalized Au nanoparticle (AuNP). Upon activating the CRISPR-Cas12a complex by the target cfDNA and subsequent single-strand DNA (ssDNA) degradation between AuNP and fluorophore, MEF occurred with color changes from purple to red-purple. Using this system, breast cancer gene-1 (BRCA-1) can be detected with very high sensitivity in 30 min. This rapid and highly selective sensor can be applied to measure other nucleic acid biomarkers such as viral DNA in field-deployable and point-of-care testing (POCT) platform.
Optimal detection of a pathogen present in biological samples depends on the ability to extract DNA molecules rapidly and efficiently. In this paper, we report a novel method for efficient DNA extraction and subsequent real-time detection in a single microchip by combining laser irradiation and magnetic beads. By using a 808 nm laser and carboxyl-terminated magnetic beads, we demonstrate that a single pulse of 40 seconds lysed pathogens including E. coli and Gram-positive bacterial cells as well as the hepatitis B virus mixed with human serum. We further demonstrate that the real-time pathogen detection was performed with pre-mixed PCR reagents in a real-time PCR machine using the same microchip, after laser irradiation in a hand-held device equipped with a small laser diode. These results suggest that the new sample preparation method is well suited to be integrated into lab-on-a-chip application of the pathogen detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.