The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.DOI:
http://dx.doi.org/10.7554/eLife.22772.001
SummaryThe trillions of cells that constitute the human body are developed from a fertilized egg through embryogenesis. However, cellular dynamics and developmental outcomes of embryonic cells in humans remain to be largely unknown due to the technical and ethical challenges. Here, we explored whole-genomes of 334 single-cell expanded clones and targeted deep-sequences of 379 bulk tissues obtained from various anatomical locations from seven individuals. Using the discovered 1,688,652 somatic mutations as an intrinsic barcode, we reconstructed cellular phylogenetic trees that provide novel insights into early human embryogenesis. Our findings suggest (1) endogenous mutational rate that is higher in the first cell division of life but decreases to ~1 per cell per cell division later in life, (2) universal unequal contribution of early cells into embryo proper resulting from early cellular bottlenecks that stochastically separate epiblasts from embryonic cells (3) uneven differential outcomes of early cells into three germ layers, left-right and cranio-caudal tissues, (4) emergence of a few ancestral cells that will contribute to the substantial fraction of adult blood cells, and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach additionally provides insights into the age-related mutational processes including UV-mediated mutagenesis and loss of chromosome X or Y in normal somatic cells. Taken together, this study scrutinized somatic mosaicism, clonal architecture, and cellular dynamics in human embryogenesis at an unprecedented level and provides a foundation for future studies to complete cellular phylogenies in human embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.