a b s t r a c tAlthough the effects of long exposure ( 1 s) to moderate temperatures (≤100 • C) have been well characterized, recent studies suggest that shorter exposure (<1 s) to higher temperatures (>100 • C) can dramatically increase skin permeability. Previous studies suggest that by keeping exposures short, thermal damage can be localized to the stratum corneum without damaging deeper tissue. Initial clinical trials have progressed to Phase II (see http://clinicaltrials.gov), which indicates the procedure can be safe. Because the effect of heating under these conditions has received little systematic or mechanistic study, we heated full-thickness skin, epidermis and stratum corneum samples from human and porcine cadavers to temperatures ranging from 100 to 315 • C for times ranging from 100 ms to 5 s. Tissue samples were analyzed using skin permeability measurements, differential scanning calorimetry, thermomechanical analysis, thermal gravimetric analysis, brightfield and confocal microscopy, and histology. Skin permeability was shown to be a very strong function of temperature and a less strong function of the duration of heating. At optimal conditions used in this study, transdermal delivery of calcein was increased up to 760-fold by rapidly heating the skin at high temperature. More specifically, skin permeability was increased (I) by a few fold after heating to approximately 100-150 • C, (II) by one to two orders of magnitude after heating to approximately 150-250 • C and (III) by three orders of magnitude after heating above 300 • C. These permeability changes were attributed to (I) disordering of stratum corneum lipid structure, (II) disruption of stratum corneum keratin network structure and (III) decomposition and vaporization of keratin to create micron-scale holes in the stratum corneum, respectively. We conclude that heating the skin with short, high temperature pulses can increase skin permeability by orders of magnitude due to structural disruption and removal of stratum corneum.
Skin has gained substantial attention as a vaccine target organ due to its immunological properties, which include a high density of professional antigen presenting cells (APCs). Previous studies have demonstrated the effectiveness of this vaccination route not only in animal models but also in adults. Young children represent a population group that is at high risk from influenza infection. As a result, this group could benefit significantly from influenza vaccine delivery approaches through the skin and the improved immune response it can induce. In this study, we compared the immune responses in young BALB/c mice upon skin delivery of influenza vaccine with vaccination by the conventional intramuscular route. Young mice that received 5μg of H1N1 A/Ca/07/09 influenza subunit vaccine using MN demonstrated an improved serum antibody response (IgG1 and IgG2a) when compared to the young IM group, accompanied by higher numbers of influenza-specific antibody secreting cells (ASCs) in the bone marrow. In addition, we observed increased activation of follicular helper T cells and formation of germinal centers in the regional lymph nodes in the MN immunized group, rapid clearance of the virus from their lungs as well as complete survival, compared with partial protection observed in the IM-vaccinated group. Our results support the hypothesis that influenza vaccine delivery through the skin would be beneficial for protecting the high-risk young population from influenza infection.
Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 μm, respectively, and an extruded height of 250 μm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.